温故知新:dfs模板-843. n-皇后问题
n−n−皇后问题是指将 nn 个皇后放在 n×nn×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 nn,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数 nn。
输出格式
每个解决方案占 nn 行,每行输出一个长度为 nn 的字符串,用来表示完整的棋盘状态。
其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1≤n≤91≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q...Q.
Q...
...Q
.Q..
思路
深度优先搜索,我们需要排除永远不可能的情况(剪枝),首先是初始化二维数组,把二维数组初始化为'.'
for(int i=0;i<n;i++){for(int j=0;j<n;j++){g[i][j]='.';}}
深度优先搜索分两步走,第一步是判断有没有走到终点,走到终点就输出我们需要的答案
if(u==n){for(int i=0;i<n;i++) puts(g[i]);puts("");return;}
第二步是遍历每一行,利用条件判断,找到可以符合条件的情况(该题是行,对角线,反对角线不能被使用过),然后改变使用状态,修改字符数组的内容,递归调用dfs函数,恢复现场,把状态和字符数组的内容都修改回来
int x=u;for(int y=0;y<n;y++){if(!col[y]&&!dg[y+x]&&!udg[y-x+n]){col[y]=dg[y+x]=udg[y-x+n]=true;g[x][y]='Q';dfs(x+1);col[y]=dg[y+x]=udg[y-x+n]=false;g[x][y]='.';}}
这里把u和i更换成了x和y,感觉更加方便理解
代码
#include<bits/stdc++.h>
using namespace std;int n;
const int N=20;
char g[N][N];
bool col[N],dg[N],udg[N];void dfs(int u)
{if(u==n){for(int i=0;i<n;i++) puts(g[i]);puts("");return;}int x=u;for(int y=0;y<n;y++){if(!col[y]&&!dg[y+x]&&!udg[y-x+n]){col[y]=dg[y+x]=udg[y-x+n]=true;g[x][y]='Q';dfs(x+1);col[y]=dg[y+x]=udg[y-x+n]=false;g[x][y]='.';}}
}int main()
{scanf("%d",&n);for(int i=0;i<n;i++){for(int j=0;j<n;j++){g[i][j]='.';}}dfs(0);return 0;
}
相关文章:
温故知新:dfs模板-843. n-皇后问题
n−n−皇后问题是指将 nn 个皇后放在 nnnn 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 nn,请你输出所有的满足条件的棋子摆法。 输入格式 共一行,包含整数 n…...
刷题笔记28——一直分不清的Kruskal、Prim、Dijkstra算法
图算法刷到这块,感觉像是走了一段黑路快回到家一样,看到这三个一直分不太清总是记混的名字,我满脑子想起的是大学数据结构课我坐在第一排,看着我班导一脸无奈,心想该怎么把这个知识点灌进木头脑袋里边呢。有很多算法我…...
Mysql时间同步设置
Mysql时间同步设置 当涉及到设置MySQL数据库时间与电脑同步时,实际的步骤可能会因操作系统和数据库版本的不同而有所差异。以下是一个基本的步骤示例,供您参考: 检查电脑时间: 首先确保电脑操作系统的时间是正确的。 设置MySQL时…...
如何理解分布式锁?
分布式锁的实现有哪些? 1.Memcached分布式锁 利用Memcached的add命令。此命令是原子操作,只有在key不存在的情况下,才能add成功,也就意味着线程得到了锁。 2.Reids分布式锁 和Memcached的方式类似,利用Redis的setn…...
windows 远程连接 ubuntu桌面xrdp
更新 sudo apt update安装组件 sudo apt-get install xorg sudo apt-get install xserver-xorg-core sudo apt-get install xorgxrdp sudo apt install xfce4 xfce4-goodies xorg dbus-x11 x11-xserver-utilsxrdp sudo apt install xrdp sudo systemctl status xrdp sudo …...
数据采集时使用HTTP代理IP效率不高怎么办?
在进行数据采集时,使用HTTP代理 可以帮助我们实现隐私保护和规避封禁的目的。然而,有时候我们可能会遇到使用HTTP代理 效率不高的问题,如连接延迟、速度慢等。本文将为您分享解决这一问题的实用技巧,帮助您提高数据采集效率&#…...
你了解的SpringCloud核心组件有哪些?他们各有什么作用?
SpringCloud 1.什么是 Spring cloud Spring Cloud 为最常见的分布式系统模式提供了一种简单且易于接受的编程模型,帮助开发人员构建有弹性的、可靠的、协调的应用程序。Spring Cloud 构建于 Spring Boot 之上,使得开发者很容易入手并快速应用于生产中。…...
【Gradle-10】不可忽视的构建分析
1、前言 构建性能对于生产力至关重要。 随着项目越来越复杂,花费在构建上的时间就越长,开发效率就越低。 通过分析构建过程,可以了解项目构建的时间都花在哪,以及项目存在哪些潜在的问题,找到构建瓶颈,解…...
2034. 股票价格波动
给你一支股票价格的数据流。数据流中每一条记录包含一个 时间戳 和该时间点股票对应的 价格 。 不巧的是,由于股票市场内在的波动性,股票价格记录可能不是按时间顺序到来的。某些情况下,有的记录可能是错的。如果两个有相同时间戳的记录出现…...
JavaScript 事件详解细节
JavaScript 事件详解细节 JavaScript 中的事件是前端开发中非常重要的一个概念。通过事件,我们可以捕捉和响应用户与网页的交互,比如点击按钮、输入文字等。这篇博客文章将详细介绍 JavaScript 中的事件,希望能帮助你更好地理解和使用这一功…...
【MySQL】事务管理
目录 MySQL事务管理 事务的概念 事务的版本支持 事务的提交方式 事务的相关演示 事务的隔离级别 查看与设置隔离级别 读未提交(Read Uncommitted) 读提交(Read Committed) 可重复读(Repeatable Read…...
Git 学习笔记 | Git 基本操作命令
Git 学习笔记 | Git 基本操作命令 Git 学习笔记 | Git 基本操作命令文件的四种状态查看文件状态忽略文件 Git 学习笔记 | Git 基本操作命令 文件的四种状态 版本控制就是对文件的版本控制,要对文件进行修改、提交等操作,首先要知道文件当前在什么状态&…...
第五章:最新版零基础学习 PYTHON 教程—Python 字符串操作指南(第七节 - Python 中的字符串模板类)
在字符串模块中,模板类允许我们为输出规范创建简化的语法。该格式使用由 $ 和有效 Python 标识符(字母数字字符和下划线)组成的占位符名称。用大括号将占位符括起来,使其后面可以跟更多的字母数字字母,且中间不留空格。写入 $$ 会创建一个转义的 $。 Python 字符串模板:…...
第八章 排序 十四、最佳归并树
目录 一、定义 二、多路最佳归并树 三、多路最佳归并树少了一个归并段 四、总结 一、定义 最佳归并树是指将若干个有序序列合并成一个有序序列的一种方式,使得所有合并操作的总代价最小的一棵二叉树。其中,代价通常指合并两个有序序列的操作次数或比…...
Python 中,类的方法的标准注释模板
在 Python 中,类的标准注释通常遵循以下格式: class 类名:"""类的简要描述属性:- 属性1 (类型): 属性1的描述- 属性2 (类型): 属性2的描述方法:- 方法1(): 方法1的描述- 方法2(): 方法2的描述示例:>>> 对象 类名()>>>…...
IPSG技术和IP组播
1,IPSG技术概述 实验: DHCP snooping IPSG 拓扑: 需求: 1,实现PC1 和PC2 动态获取IP地址 2, 在SW2 配置DHCP snooping 实现DHCP 服务器的安全 3, 在 连接PC 1 和 PC2 的 接口上 做IPSG ,防止终端…...
【大数据】Apache NiFi 助力数据处理及分发
Apache NiFi 助力数据处理及分发 1.什么是 NiFi ?2.NiFi 的核心概念3.NiFi 的架构4.NiFi 的性能预期和特点5.NiFi 关键特性的高级概览 1.什么是 NiFi ? 简单的说,NiFi 就是为了解决不同系统间数据自动流通问题而建立的。虽然 dataflow 这个术…...
什么是 SRE?一文详解 SRE 运维体系
目录 可观测性系统 故障响应 故障复盘 测试与发布 容量规划 自动化工具开发 用户体验 可观测性系统 在任何有一定规模的企业内部,一旦推行起来整个SRE的运维模式,那么对于可观测性系统的建设将变得尤为重要,而在整个可观测性系统中&a…...
【Docker】初识 Docker,Docker 基本命令的使用,Dockerfile 自定义镜像的创建
文章目录 前言:项目部署的挑战一、初识 Docker1.1 什么是 Docker1.2 Docker 与 虚拟机的区别1.3 镜像和容器以及镜像托管平台1.4 Docker的架构解析1.5 Docker 在 CentOS 中的安装 二、Docker 的基本操作2.1 操作 Docker 镜像命令2.1.1 镜像操作相关命令2.1.2 示例一…...
【Docker】简易版harbor部署
文章目录 依赖于docker-compose下载添加执行权限测试 安装harbor下载解压修改配置文件部署配置开机自启动登录验证 使用harbor登录打标签上传下载 常见问题 依赖于docker-compose 下载 curl -L “https://github.com/docker/compose/releases/download/2.22.0/docker-compose-…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
