LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
示例 1:
输入:matrix =
[[0,1,1,1],[1,1,1,1],[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.
示例 2:
输入:matrix =
[[1,0,1],[1,1,0],[1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.
提示:
1 <= arr.length <= 3001 <= arr[0].length <= 3000 <= arr[i][j] <= 1
解法 动态规划/递推(最优)
本题和 221. 最大正方形 非常类似,使用的方法也几乎相同。
我们用 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示以 ( i , j ) (i,j) (i,j) 为右下角的正方形的最大边长,那么除此定义之外, d p [ i ] [ j ] = x dp[i][j] = x dp[i][j]=x 也表示以 ( i , j ) (i,j) (i,j) 为右下角的正方形的数目为 x x x(即边长为 1 , 2 , . . . , x 1, 2, ..., x 1,2,...,x 的正方形各一个)。在计算出所有的 d p [ i ] [ j ] dp[i][j] dp[i][j] 后,我们将它们进行累加,就可以得到矩阵中正方形的数目。
我们尝试挖掘 d p [ i ] [ j ] dp[i][j] dp[i][j] 与相邻位置的关系来计算出 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值。

如上图所示,若对于位置 ( i , j ) (i,j) (i,j) 有 d p [ i ] [ j ] = 4 dp[i][j] = 4 dp[i][j]=4 ,我们将以 ( i , j ) (i,j) (i,j) 为右下角、边长为 4 4 4 的正方形涂上色,可以发现其左侧位置 ( i , j − 1 ) (i, j - 1) (i,j−1) ,上方位置 ( i − 1 , j ) (i - 1, j) (i−1,j) 和左上位置 ( i − 1 , j − 1 ) (i - 1, j - 1) (i−1,j−1) 均可以作为一个边长为 4 − 1 = 3 4 - 1 = 3 4−1=3 的正方形的右下角。也就是说,这些位置的的 d p dp dp 值至少为 3 3 3 ,即:
dp[i][j - 1] >= dp[i][j] - 1
dp[i - 1][j] >= dp[i][j] - 1
dp[i - 1][j - 1] >= dp[i][j] - 1
将这三个不等式联立,可以得到:
min ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − 1 ] ) ≥ d p [ i ] [ j ] − 1 \min\big(dp[i][j - 1],\ dp[i - 1][j],\ dp[i - 1][j - 1]\big) \geq dp[i][j] - 1 min(dp[i][j−1], dp[i−1][j], dp[i−1][j−1])≥dp[i][j]−1
这是我们通过固定 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值,判断其相邻位置与之的关系得到的不等式。同理,我们也可以固定 d p [ i ] [ j ] dp[i][j] dp[i][j] 相邻位置的值,得到另外的限制条件。
如上图所示,假设 d p [ i ] [ j − 1 ] dp[i][j - 1] dp[i][j−1] , d p [ i − 1 ] [ j ] dp[i - 1][j] dp[i−1][j] 和 d p [ i − 1 ] [ j − 1 ] dp[i - 1][j - 1] dp[i−1][j−1] 中的最小值为 3 3 3 ,也就是说, ( i , j − 1 ) (i, j - 1) (i,j−1) , ( i − 1 , j ) (i - 1, j) (i−1,j) 和 ( i − 1 , j − 1 ) (i - 1, j - 1) (i−1,j−1) 均可以作为一个边长为 3 3 3 的正方形的右下角。我们将这些边长为 3 3 3 的正方形依次涂上色,可以发现,如果位置 ( i , j ) (i,j) (i,j) 的元素为 1 1 1 ,那么它可以作为一个边长为 4 4 4 的正方形的右下角, d p dp dp 值至少为 4 4 4 ,即:
d p [ i ] [ j ] ≥ min ( f [ i ] [ j − 1 ] , f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] \geq \min\big(f[i][j - 1], f[i - 1][j], f[i - 1][j - 1]\big) + 1 dp[i][j]≥min(f[i][j−1],f[i−1][j],f[i−1][j−1])+1
将其与上一个不等式联立,可以得到:
d p [ i ] [ j ] = min ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = \min\big(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]\big) + 1 dp[i][j]=min(dp[i][j−1],dp[i−1][j],dp[i−1][j−1])+1
这样我们就得到了 d p [ i ] [ j ] dp[i][j] dp[i][j] 的递推式。此外还要考虑边界( i = 0 i = 0 i=0 或 j = 0 j = 0 j=0)以及位置 ( i , j ) (i,j) (i,j) 的元素为 0 0 0 的情况。
我们按照行优先的顺序依次计算 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值,就可以得到最终的答案。
class Solution {
public:int countSquares(vector<vector<int>>& matrix) {int m = matrix.size(), n = matrix[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));int ans = 0;for (int i = 0; i < m; ++i) {for (int j = 0; j < n; ++j) {if (matrix[i][j] == 1) {dp[i + 1][j + 1] = 1 + min(dp[i][j], min(dp[i][j + 1], dp[i + 1][j]));ans += dp[i + 1][j + 1];}}}return ans;}
};
由于递推式中 d p [ i ] [ j ] dp[i][j] dp[i][j] 只与本行和上一行的若干个值有关,因此空间复杂度可以优化至 O ( N ) O(N) O(N) 。
class Solution {
public:int countSquares(vector<vector<int>>& matrix) {int m = matrix.size(), n = matrix[0].size();vector<int> dp(n + 1);int ans = 0;int pre = 0, temp = 0;for (int i = 0; i < m; ++i) {for (int j = 0; j < n; ++j) {if (matrix[i][j] == 1) {temp = dp[j + 1];dp[j + 1] = 1 + min(pre, min(dp[j + 1], dp[j]));pre = temp; // pre为dp[i][j]ans += dp[j + 1];} else pre = dp[j + 1], dp[j + 1] = 0; // 注意此时也要记录dp[i][j],并更新dp[i+1][j+1]}}return ans;}
};
复杂度分析:
- 时间复杂度: O ( m n ) O(mn) O(mn)
- 空间复杂度: O ( n ) O(n) O(n)
相关文章:
LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
测试部门来了个00后卷王之王,老油条感叹真干不过,但是...
都说00后躺平了,但是有一说一,该卷的还是卷。 这不,前段时间我们公司来了个00后,工作都没两年,跳槽到我们公司起薪18K,都快接近我了。后来才知道人家是个卷王,从早干到晚就差搬张床到工位睡觉了…...
360 G800行车记录仪,不使用降压线如何开机,8芯插头的定义。
G800记录仪的插头是这样的,图中标出了线的颜色。其中红色为常电V,黑色为GND负极,黄色为ACC受车是否启动控制。 这个记录仪原装的电源线没有降压功能,所以这里的V是12V。 记录仪内部有电源板,负责将12V降压为5V。 如果…...
vue2踩坑之项目:Swiper轮播图使用
首先安装swiper插件 npm i swiper5 安装出现错误:npm ERR npm ERR! code ERESOLVE npm ERR! ERESOLVE could not resolve npm ERR! npm ERR! While resolving: vue/eslint-config-standard6.1.0 npm ERR! Found: eslint-plugin-vue8.7.1 npm ERR! node_modules/esl…...
python经典百题之分桃子
题目:海滩上有一堆桃子,五只猴子来分。第一只猴子把这堆桃子平均分为五份,多了一个,这只 猴子把多的一个扔入海中,拿走了一份。第二只猴子把剩下的桃子又平均分成五份,又多了 一个,它同样把多的一个扔入海中…...
vscode ssh linux C++ 程序调试
vscode调试c++程序相比vs2022要复杂很多,vs2022可以"一键运行调试",vscode则需要自己配置。 vscode调试程序时,会在当前工作目录产生.vscode 目录, 该目录有两个重要文件launch.json和tasks.json, 下面介绍两种调试方法: 手动调试和自动调试。 手动调试 不管…...
VUE和Angular有哪些区别?
Vue.js和Angular是两个流行的前端JavaScript框架,它们有一些明显的区别,包括以下几个方面: 1、语言和工具链的选择: Vue.js使用HTML、JavaScript和CSS来创建组件,使得它更容易学习,因为它使用了常见的Web…...
云原生边缘计算KubeEdge安装配置(二)
1. K8S集群部署,可以参考如下博客 请安装k8s集群,centos安装k8s集群 请安装k8s集群,ubuntu安装k8s集群 请安装kubeedge cloudcore centos安装K8S 2.安装kubEedge 2.1 编辑kube-proxy使用ipvs代理 kubectl edit configmaps kube-proxy -…...
SQL多表设计--一对多(外键)
-- 完成部门和员工的-- 选择当前db03 这个数据库use db03;-- 查看当前选中的数据库select database();-- 创建员工表create table tb_emp (id int unsigned primary key auto_increment comment ID,username varchar(20) not null unique comment 用户名,password varchar(32)…...
Stm32_标准库_9_TIM
频率(HZ)是频率的基本单位1HZ是1s的倒数 STM32F103C8T6一般情况给定时器的内部时钟都是72MHz(系统主频率) TIM基本构成 计数器、预分频器、自动化重装 // 都是16位其中计数器、自动化重装,都是16位换算成10进制范围为[0, 655536] 时间 1 /…...
283. 移动零
283. 移动零 原题 /** 左指针左边均为非零数; 右指针左边直到左指针处均为零。*/ class Solution {public void moveZeroes(int[] nums) {int left 0;int right 0;while(right<nums.length){if(nums[right]!0){swap(nums,left,right);left;}right;}}public v…...
用 HTTP 提交数据,基本就这 5 种方式
网页开发中,向服务端提交数据是一个基本功能,工作中会大量用 xhr/fetch 的 api 或者 axios 这种封装了一层的库来做。 可能大家都写过很多 http/https 相关的代码,但是又没有梳理下它们有哪几种呢? 其实通过 http/https 向服务端…...
基于matlab统计Excel文件一列数据中每个数字出现的频次和频率
一、需求描述 如上表所示,在excel文件中,有一列数,统计出该列数中,每个数出现的次数和频率。最后,将统计结果输出到新的excel文件中。 二、程序讲解 第一步:选择excel文件; [Filename, Pathn…...
近期分享学习心得3
1、全屏组件封装 先看之前大屏端的监控部分全屏代码 整块全屏代码 常规流是下面这种 //进入全屏 function full(ele) {//if (ele.requestFullscreen) {// ele.requestFullscreen();//} else if (ele.mozRequestFullScreen) {// ele.mozRequestFullScreen();//} el…...
前端uniapp如何修改下拉框uni-data-select下面的uni-icons插件自带的图片【修改uniapp自带源码图片/图标】
目录 未改前图片未改前源码未改前通过top和bottom 和修改后图片转在线base64大功告成最后 未改前图片 未改前源码 然后注释掉插件带的代码,下面要的 未改前通过top和bottom 和修改后 找到uni-icons源码插件里面样式 图片转在线base64 地址 https://the-x.cn/b…...
【计算机基础】Git系列3:常用操作
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
有哪些值得推荐的Java 练手项目?
大家好,我是 jonssonyan 我是一名 Java 后端程序员,偶尔也会写一写前端,主要的技术栈是 JavaSpringBootMySQLRedisVue.js,基于我学过的技术认真的对每个分享的项目进行鉴别,今天就和大家分享我曾经用来学习的开源项目…...
【Godot】时间线(技能)节点
4.1 游戏中一般都会有各种各样的技能,或者其他需要按一定的时间顺序去执行的功能。 这里我写出了一个时间线节点,就像是在播放动画一样,按一定的阶段去执行某些功能 # # Timeline # # - author: zhangxuetu # - datetime: 2023-09-24 23…...
每日练习-9
目录 1、井字棋 2、密码强度等级 3、二维数组中的查找 4.调整数组奇数偶数 5.旋转数组中的最小元素 6、替换空格 1、井字棋 解析:井字棋有四种情况表示当前玩家获胜,行全为1, 列全为1,主对角全为1, 副对角全为1。遍历…...
微信小程序 -- 页面间通信
前言 今天我们来说下微信小程序的页面间通信: 通过url传参实现页面间单向通信通过getCurrentPages()页面栈实现页面间单向通信通过EventChannel实现页面间双向通信 1、url传参 我们知道页面之间的跳转可以通过路由组件来实现,其中组件的属性url就是要…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...
