当前位置: 首页 > news >正文

【论文阅读】面向抽取和理解基于Transformer的自动作文评分模型的隐式评价标准(实验结果部分)

方法

在这里插入图片描述

结果

在这一部分,我们展示对于每个模型比较的聚合的统计分析当涉及到计算特征和独立的特征组(表格1),抽取功能组和对齐重要功能组(表格2),并且最后,我们提供从模型比较(LANGUAGE模型v.s.MAIN IDEA模型)中获取的样例。由于长度限制,我们只展示了这个比较的细节样例。相似的图片和相关性分析展示在Github上。

1.独立特征组

  • 因为每个训练好的模型都从他们的训练集合中留出一个不同集合的主题,分析集中相同的主题需要被识别出来,并且那么,抽取的特征的数量和导致的独立特征组在每个模型比较中不同。
    在这里插入图片描述
  • 为每个模型比较计算独立的特征组(表格1),对所有的比较,都产生了在原先70%和77%之间的抽取的特征,除了LANGUAGE V SUPPORT,和原先的特征相比只产生了57%独立特征组;不同比较之间所对齐的特征组类型差异很大。

2.功能组件组

  • 每个模型的初始功能组件提取引发了28到119个功能组件的数量。表格1和2展示了对于一个给定的模型,更少的功能组件被抽取,如果在分析数据集中有更少的样例。
    在这里插入图片描述

  • 除去这一噪声,一个清晰的模型出现,也就是ORGANIZATION模型有最多的功能组件,其次是LANGUAGE模型。MAIN IDEA模型有着更少的功能组件,SUPPORT模型的最少。

  • 当执行降维操作来计算功能组的时候,功能组件的总数减少到了大约61-71%左右。

3.重要功能组

  • 重要功能组有至少一个足够的对一个特征组的对齐。
  • 作为重要功能组的一个视觉辅助,可以看图2和3的左侧。
    在这里插入图片描述

4.功能组的对齐

  • 对于所有的模型比较的对齐的发现的整个部分可能太大量而不能以一个会议论文的形式进行展示。但是我们可以展示在我们的分析中发现的主要的趋势。
  • 第一个主要的趋势是所有模型都具有与文章的统计特征相关的功能组。此外,通过计算该类型内部特征之间的相关性,可以确定段落数量可能是最显著的贡献因素。
  • 第二个趋势的集合被展示在表4中,在表中,每个模型的总共的对齐的特征组的占比被计算。
    在这里插入图片描述
  • 这一结果揭示了:ORGANIZATION模型,比较其他模型,相对更加对齐基于RST的特征;同时,MAIN IDEA模型有最小的占比。LANGUAGE模型最对齐词列表特征,它是算法生成的和人工创建的词列表特征的结合。
  • 对于最后一个百分比,我们结合了主题和人口统计的特征,发现SUPPORT模型趋向于最少对齐这类特征。

5.定性分析

  • 尽管我们展示的方法能够很快得增强一个人对于一个模型的理解,直接从黑箱神经网络到对齐的特征组,理解什么函数/功能一个儿子组表示是更加困难的。所以,解决一个特征组表示什么函数/功能,来形成一个强的陈述解释模型在做什么是必要的。
  • 比如说,我们发现很多模型和包含人口统计特征的特征组是连接的(在图2和3中被标红)。然而,对包含主题的数据集进行定性分析时,我们发现,在控制作文长度时,不同学校的主题分布存在差异,某些学校(带有其人口统计特征)是特定主题的唯一来源。因此,许多这些特征组很可能更多地基于主题,而不是潜在的更为问题复杂的基于人口统计的特征组。

6.讨论

  • 我们进一个深入分析结果,强调在功能组和他们与作文特征的相关性的对齐中的主要趋势。
  • 值得注意的是,LANGUAGE V SUPPORT对比出现作为一个异常点在我们的各个分析中。这个差异很有可能是因为相对而言更少的文章被两个模型的分析集所共享,这可能导致一个具有更多噪声的分析,并且暴露了方法的一个局限性。
  • 在非ORGANIZATION模型中,几乎没有或根本没有独特存在于ORGANIZATION模型中的功能组。

相关文章:

【论文阅读】面向抽取和理解基于Transformer的自动作文评分模型的隐式评价标准(实验结果部分)

方法 结果 在这一部分,我们展示对于每个模型比较的聚合的统计分析当涉及到计算特征和独立的特征组(表格1),抽取功能组和对齐重要功能组(表格2),并且最后,我们提供从模型比较&#x…...

VueRouter与expres/koa中间件的关联

ueRouter: runQueue 路由守卫都是有三个参数to,from,next。其中next就是下方的fn执行时候传入的第二个参数(回调函数),只有该回调执行后才会挨个遍历queue内的守卫。 中间件的作用 隔离基础设施与业务逻辑之间的细节。详细的内容位于《深入浅出Node.js》P210 另外一…...

二十、SpringCloud Alibaba Seata处理分布式事务

目录 一、分布式事务问题1、分布式之前2、分布式之后 二、Seata简介1、Seata是什么?2、Seata能干嘛?3、去拿下?4、怎么玩 三、Seata-server安装四、订单、库存、账户业务数据库准备五、订单、库存、账户业务微服务准备六、Seata原理介绍 一、…...

标准误与聚类稳健标准误的理解

1 标准误 1.1 定义 标准误(Standard Error)是用来衡量统计样本估计量(如均值、回归系数等)与总体参数之间的差异的一种统计量。标准误衡量了样本估计量的变异程度,提供了对总体参数的估计的不确定性的度量。标准误越…...

【Github】将本地仓库同步到github上

许久没有用GitHub了,怎么传仓库都忘记了。在这里记录一下 If you have a local folder on your machine and you want to transform it into a GitHub repository, follow the steps below: 1. Install Git (if not already installed) Make sure you have Git in…...

c++视觉--通道分离,合并处理,在分离的通道中的ROI感兴趣区域里添加logo图片

c视觉–通道分离&#xff0c;合并处理 通道分离: split()函数 #include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg");// 检查图像是否成功加载if (image.empty()) {std::cerr << "Error: Could not read the…...

python爬虫:多线程收集/验证IP从而搭建有效IP代理池

目录 一、前言 二、IP池的实现 1. 收集代理IP 2. 验证代理IP可用性 3. 搭建IP代理池 三、多线程实现 四、代理IP的使用 五、总结 一、前言 在网络爬虫中&#xff0c;IP代理池的作用非常重要。网络爬虫需要大量的IP地址来发送请求&#xff0c;同时为了降低被封禁的风险…...

阻塞队列以及阻塞队列的一个使用

阻塞队列以及阻塞队列的一个使用 阻塞队列简介 阻塞队列&#xff08;Blocking Queue&#xff09;是一种常见的队列数据结构&#xff0c;它具有特殊的行为&#xff0c;可以用于多线程编程中&#xff0c;以协调不同线程之间的任务执行和数据传递。阻塞队列在多线程环境中非常有…...

kafka的请求处理机制

目录 前言&#xff1a; kafak是如何处理请求的&#xff1f; 控制请求与数据类请求 参考资料 前言&#xff1a; 无论是 Kafka 客户端还是 Broker 端&#xff0c;它们之间的交互都是通过“请求 / 响应”的方式完成的。比如&#xff0c;客户端会通过网络发送消息生产请求给 B…...

Linux系统管理:虚拟机Centos Stream 9安装

目录 一、理论 1.Centos Stream 9 二、实验 1.虚拟机Centos Stream 9安装准备阶段 2.安装Centos Stream 9 3.进入系统 一、理论 1.Centos Stream 9 (1) 简介 CentOS Stream 是一种 Linux 操作系统。安装此操作系统的难题在于&#xff0c;在安装此系统之前&#xff0c…...

5种排序算法

文章目录 一&#xff0c;排序算法时间复杂度比较二&#xff0c;插入排序三&#xff0c;冒泡排序四&#xff0c;快速排序五&#xff0c;堆排序六&#xff0c;二分归并排序 一&#xff0c;排序算法时间复杂度比较 算法最坏情况下平均情况下插入排序O(n )O(n)冒泡排序O(n)O(n)快速…...

TCP/IP(七)TCP的连接管理(四)

一 全连接队列 nginx listen 参数backlog的意义 nginx配置文件中listen后面的backlog配置 ① TCP全连接队列概念 全连接队列: 也称 accept 队列 ② 查看应用程序的 TCP 全连接队列大小 实验1&#xff1a; ss 命令查看 LISTEN状态下 Recv-Q/Send-Q 含义附加&#xff1a;…...

LeetCode【84】柱状图中的最大矩形

题目&#xff1a; 思路&#xff1a; https://blog.csdn.net/qq_28468707/article/details/103682528 https://www.jianshu.com/p/2b9a36a548fa 清晰 代码&#xff1a; public int largestRectangleArea(int[] heights) {int[] heightadd new int[heights.length 1];for (i…...

C++:关于模拟实现vector和list中迭代器模块的理解

文章目录 list和vector的迭代器对比list的实现过程完整代码 本篇是关于vector和list的模拟实现中&#xff0c;关于迭代器模块的更进一步理解&#xff0c;以及在前文的基础上增加对于反向迭代器的实现和库函数的对比等 本篇是写于前面模拟实现的一段时间后&#xff0c;重新回头…...

HTML 笔记 表格

1 表格基本语法 tr&#xff1a;table row th&#xff1a;table head 2 表格属性 2.1 基本属性 表格的基本属性是指表格的行、列和单元格但并不是每个表格的单元格大小都是统一的&#xff0c;所以需要设计者通过一些属性参数来修改表格的样子&#xff0c;让它们可以更更多样…...

3.1 C/C++ 使用字符与指针

C/C语言是一种通用的编程语言&#xff0c;具有高效、灵活和可移植等特点。C语言主要用于系统编程&#xff0c;如操作系统、编译器、数据库等&#xff1b;C语言是C语言的扩展&#xff0c;增加了面向对象编程的特性&#xff0c;适用于大型软件系统、图形用户界面、嵌入式系统等。…...

[代码学习]einsum详解

einsum详解 该函数用于对一组输入 Tensor 进行 Einstein 求和&#xff0c;该函数目前仅适用于paddle的动态图。 Einstein 求和是一种采用 Einstein 标记法描述的 Tensor 求和&#xff0c;输入单个或多个 Tensor&#xff0c;输出单个 Tensor。 paddle.einsum(equation, *opera…...

女性必看——“黄体破裂”到底有多可怕?

前几天的亚运会上发生了这样一件事&#xff1a; 雅思敏&#xff08;化名&#xff09;是一名国外皮划艇运动员&#xff0c;在亚运会上奋力完成皮划艇比赛后&#xff0c;突然开始 剧烈腹痛、面色苍白&#xff0c;大汗淋漓&#xff0c;经过进一步检查&#xff0c;确诊卵巢黄体破裂…...

colab切换目录的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

基于SSM的生活缴费系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...