利用Python和Sprak求曲线与X轴上方的面积
有n组标本(1, 2, 3, 4), 每组由m个( , , ...)元素( , )组成(m值不定), . 各组样本的分布 曲线如下图所示. 通过程序近似实现各曲线与oc, cd直线围成的⾯积.

思路
- 可以将图像分成若干个梯形,每个梯形的底边长为(Xn+1 - Xn-1),面积为矩形的一半,其面积 = (底边长 X 高)/2,即S = (Xn+1 - Xn-1) * (Yn+1 + Yn+2),对于整个图形,面积为所有梯形面积之和。
[图片] - 求曲线与其下方x轴的面积,本质上是一个求积分的过程。可以对所有点进行积分,可以调用np.tapz(x, y)来求
代码
"""Calculate the area between the coordinates and the X-axis
"""import typing
from pandas import read_parquetdef calc_area(file_name: str) -> typing.Any:"""⾯积计算.Args:file_name: parquet⽂件路径, eg: data.parquetReturns:计算后的结果"""res = []# Load data from .parquetinitial_data = read_parquet(file_name)# Get number of groupsgroup_numbers = initial_data["gid"].drop_duplicates().unique()# Loop through the results for each groupfor i in group_numbers:data = initial_data[initial_data["gid"] == i]data = data.reset_index(drop=True)# Extract the list of x\yx_coordinates = data["x"]y_coordinates = data["y"]# Calculate area between (x[i], y[i]) and (x[i+1], y[i+1])rect_areas = [(x_coordinates[i + 1] - x_coordinates[i])* (y_coordinates[i + 1] + y_coordinates[i])/ 2for i in range(len(x_coordinates) - 1)]# Sum the total arearesult = sum(rect_areas)res.append(result)# Also we can use np for convenience# import numpy as np# result_np = np.trapz(y_coordinates, x_coordinates)return rescalc_area("./data.parquet")
或者使用pyspark
"""Calculate the area between the coordinates and the X-axis
"""import typing
from pyspark.sql import Window
from pyspark.sql.functions import lead, lit
from pyspark.sql import SparkSessiondef calc_area(file_name: str) -> typing.Any:"""⾯积计算.Args:file_name: parquet⽂件路径, eg: data.parquetReturns:计算后的结果"""res = []# Create a session with sparkspark = SparkSession.builder.appName("Area Calculation").getOrCreate()# Load data from .parquetinitial_data = spark.read.parquet(file_name, header=True)# Get number of groupsdf_unique = initial_data.dropDuplicates(subset=["gid"]).select("gid")group_numbers = df_unique.collect()# Loop through the results for each groupfor row in group_numbers:# Select a set of datadata = initial_data.filter(initial_data["gid"] == row[0])# Adds a column of delta_x to the data frame representing difference# from the x value of an adjacent data pointwindow = Window.orderBy(data["x"])data = data.withColumn("delta_x", lead("x").over(window) - data["x"])# Calculated trapezoidal areadata = data.withColumn("trap",(data["delta_x"]* (data["y"] + lit(0.5) * (lead("y").over(window) - data["y"]))),)result = data.agg({"trap": "sum"}).collect()[0][0]res.append(result)return rescalc_area("./data.parquet")
提高计算的效率
- 可以使用更高效的算法,如自适应辛普森方法或者其他更快的积分方法
- 可以在数据上进行并行化处理,对pd DataFrame\spark DataFrame进行分区并使用分布式计算
- 在使用spark的时候可以为window操作制定分区来提高性能
- 以下为与本例无关的笼统的提高效率的方法:
- 并行计算:使用多核CPU或分布式计算系统,将任务分解成多个子任务并行处理。
- 数据压缩:压缩大数据以减少存储空间和带宽,加快读写速度。
- 数据分块:对大数据进行分块处理,可以减小内存需求并加快处理速度。
- 缓存优化:优化缓存策略,减少磁盘访问和读取,提高计算效率。
- 算法优化:使用高效率的算法,比如基于树的算法和矩阵算法,可以提高计算效率。
相关文章:
利用Python和Sprak求曲线与X轴上方的面积
有n组标本(1, 2, 3, 4), 每组由m个( , , ...)元素( , )组成(m值不定), . 各组样本的分布 曲线如下图所示. 通过程序近似实现各曲线与oc, cd直线围成的⾯积. 思路 可以将图像分成若干个梯形,每个梯形的底边长为(Xn1 - Xn-1),面积为矩形的一半,…...
利用机器学习(mediapipe),进行人手的21个3D手关节坐标检测
感知手的形状和动作的能力可能是在各种技术领域和平台上改善用户体验的重要组成部分。例如,它可以构成手语理解和手势控制的基础,并且还可以在增强现实中将数字内容和信息覆盖在物理世界之上。虽然自然而然地出现在人们手中,但是强大的实时手感知力无疑是一项具有挑战性的计…...
【添砖java】谁说编程第一步是hello world
编程第一步明明是下载编译器和配置环境(小声逼逼)。 Windows下的java环境安装: java的安装包分为两类,一类是JRE(Java Runtime Environmental),是一个独立的java运行环境;一类是JDK…...
el-table大数据量渲染卡顿问题
1、场景描述 在项目开发中,遇到在表格中一次性加载完的需求,且加载数量不少,有几百几千条,并且每条都可能有自己的下拉框,输入框来做编辑功能,此时普通的el-table肯定会导致浏览器卡死,那么怎么…...
MyBatis-Plus 实现分页的几种写法
简介MyBatis-Plus (opens new window)(简称 MP)是一个 MyBatis (opens new window)的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。快速开始添加依赖全新的 MyBatis-Plus 3.0 版本基于 JDK8ÿ…...
记一次Binder内存不足导致的应用被杀
每个进程的可用Binder内存大小是 1M-8KB 也就是900多KB 事情的起因的QA压测过程发生进程号变更,怀疑APP被杀掉过,于是开始看日志(实际后来模拟的时候可以发现app确实被杀掉了) APP的压测平台会上报进程号变更时间点,发…...
Zabbix4.0架构理解-zabbix的工作方式
目录 1.1、zabbix4.0架构图 1.2、zabbix的进程 1、 zabbix server 2、zabbix agent 3、 zabbix proxy 4、 java gateway 5、zabbix get 1.3、zabbix的几种工作方式 1、通过zabbix agent 2、通过zabbix proxy 3、通过 zabbix java gateway 4、其他 1.3、zabbix 数据走…...
MySQL中的一些非常实用的函数、语法
前言我最近几年用MYSQL数据库挺多的,发现了一些非常有用的小玩意,今天拿出来分享到大家,希望对你会有所帮助。1.group_concat在我们平常的工作中,使用group by进行分组的场景,是非常多的。比如想统计出用户表中&#x…...
RT-Thread移植到STM32F407
文章目录第一步:获取RT-Thread源码第二步:项目结构介绍第三步:拷贝示例代码到裸机工程第四步:删除无用文件第五步:修改工程目录结构第六步:添加工程文件路径第七步:编译第八步:修改配…...
VR全景到底有多全能?为何屡受关注?
告别两年的“冰封”时期,现在疫情放开已经有一段时间了,各个行业的市场和经济已经逐步回暖,但是疫情对广大群众造成的心理阴影还是迟迟未有退散。就拿去电影院看电影来说,以前看电影是看心情,现在看电影则是看环境&…...
剑指 Offer 30. 包含min函数的栈
摘要 剑指 Offer 30. 包含min函数的栈 一、栈解析 package Stock;import java.util.Stack;/*** Classname JZ30min函数栈* Description TODO* Date 2023/2/24 18:59* Created by xjl*/ public class JZ30min函数栈 {/*** description 最小栈的含义是每次从栈中获取的数据都是…...
stm32f407探索者开发板(二十二)——通用定时器基本原理讲解
文章目录一、三种定时器的区别二、通用定时器特点2.1 功能特点描述2.2 计数器模式三、通用定时器工作过程四、附一、三种定时器的区别 STM32F40x系列总共最多有14个定时器 三种(4)STM32定时器区别 二、通用定时器特点 2.1 功能特点描述 STM3 F4的通…...
cmake 入门三 常用变量和指令
cmake常用变量 一、cmake 变量引用的方式: 前面我们已经提到了,使用${}进行变量的引用。在IF 等语句中,是直接使用变量名而不通过${}取值 二,cmake 自定义变量的方式: 主要有隐式定义和显式定义两种,一…...
Linux基础命令-find搜索文件位置
文章目录 find 命令介绍 语法格式 命令基本参数 参考实例 1)在root/data目录下搜索*.txt的文件名 2)搜索一天以内最后修改时间的文件;并将文件删除 3)搜索777权限的文件 4)搜索一天之前变动的文件复制到test…...
获取浏览器硬件资源的媒体数据(拍照、录音、录频、屏幕共享)
目录一、window.navigator 对象包含有关访问者浏览器的信息取二、MediaDevices1.使用麦克风2.使用摄像头(和音频一样)3.拍照4.录屏三、MediaRecorder(录制,可录制音频视屏)一、window.navigator 对象包含有关访问者浏览器的信息取 <!DOCTYPE html>…...
Java入门教程||Java 日期时间||Java 正则表达式
Java 日期时间java.util包提供了Date类来封装当前的日期和时间。Date类提供两个构造函数来实例化Date对象。第一个构造函数使用当前日期和时间来初始化对象。Date( )第二个构造函数接收一个参数,该参数是从1970年1月1日起的毫秒数。Date(long millisec)Date对象创建…...
详解八大排序算法
文章目录前言排序算法插入排序直接插入排序:希尔排序(缩小增量排序)选择排序直接选择排序堆排序交换排序冒泡排序快速排序hoare版本挖坑法前后指针版本快速排序的非递归快速排序总结归并排序归并排序的非递归实现:计数排序排序算法复杂度及稳定性分析总结前言 本篇…...
python库streamlit学习笔记
什么是streamlit? Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的机器学习和数据科学Web应用程序。它是一个基于Python的库,专为机器学习工程师设计。数据科学家或机器学习工程师不是网络开发人员,他们对花几周时间学习…...
C/C++开发,无可避免的内存管理(篇一)-约束好跳脱的内存
一、养成内存管理好习惯 1.1 养成动态对象创建、调用及释放好习惯 开发者手动接管内存分配时,必须处理这两个任务。分配原始内存时,必须在该内存中构造对象;在释放该内存之前,必须保证适当地撤销这些对象。如果你的项目是c项目&am…...
在React项目中引入字体文件并使用
一、背景 设计稿里某些文字所用的字体,系统默认不支持。 比如设计需要的这个字体:EmerlandRegular,即使在css里将文字字体设置为他们,实际效果也显示不出来。 二、现象及原因 1、样式 2、期待效果 3、实际效果 实际上是因为这个…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
