当前位置: 首页 > news >正文

BN体系理解——类封装复现

 

 

 

 

 

from pathlib import Path
from typing import Optionalimport torch
import torch.nn as nn
from torch import Tensorclass BN(nn.Module):def __init__(self,num_features,momentum=0.1,eps=1e-8):##num_features是通道数"""初始化方法:param num_features:特征属性的数量,也就是通道数目C"""super(BN, self).__init__()##register_buffer:将属性当成parameter进行处理,唯一的区别就是不参与反向传播的梯度求解self.register_buffer('running_mean', torch.zeros(1, num_features, 1, 1))self.register_buffer('running_var', torch.zeros(1, num_features, 1, 1))self.running_mean: Optional[Tensor]self.running_var: Optional[Tensor]self.running_mean=torch.zeros([1,num_features,1,1])self.running_var=torch.zeros([1,num_features,1,1])self.gamma=nn.Parameter(torch.ones([1,num_features,1,1]))self.beta=nn.Parameter(torch.zeros(1,num_features,1,1))self.eps=epsself.momentum=momentumdef forward(self,x):"""前向过程output=(x-μ)/α*γ+β:param x: [N,C,H,W]:return: [N,C,H,W]"""if self.training:#训练阶段--》使用当前批次的数据_mean=torch.mean(x,dim=(0,2,3),keepdim=True)_var = torch.var(x, dim=(0, 2, 3), keepdim=True)#将训练过程中的均值和方差保存下来--方便推理的时候使用--》滑动平均self.running_mean=self.momentum*self.running_mean+(1.0-self.momentum)*_meanself.running_var=self.momentum*self.running_var+(1.0-self.momentum)*_varelse:#推理阶段-->使用的是训练过程中的累积数据_mean=self.running_mean_var=self.running_varz=(x-_mean)/torch.sqrt(_var+self.eps)*self.gamma+self.betareturn zif __name__ == '__main__':torch.manual_seed(28)path_dir=Path("./output/models")path_dir.mkdir(parents=True,exist_ok=True)device=torch.device("cuda" if torch.cuda.is_available() else "cpu")bn=BN(num_features=12)bn.to(device)#只针对子模块和参数进行转换#模拟训练过程bn.train()xs=[torch.randn(8,12,32,32).to(device) for _ in range(10)]for _x in xs:bn(_x)print(bn.running_mean.view(-1))print(bn.running_var.view(-1))#模拟推理过程bn.eval()_r=bn(xs[0])print(_r.shape)bn=bn.cpu()#保存都是以cpu保存,恢复再自己转回GPU上#模拟模型保存torch.save(bn,str(path_dir/'bn_model.pkl'))#state_dict:获取当前模块的所有参数(Parameter+register_buffer)torch.save(bn.state_dict(),str(path_dir/"bn_params.pkl"))#pt结构的保存traced_script_module=torch.jit.trace(bn.eval(),xs[0].cpu())traced_script_module.save("./output/bn_model.pt")#模拟模型恢复bn_model=torch.load(str(path_dir/"bn_model.pkl"),map_location='cpu')bn_params=torch.load(str(path_dir/"bn_params.pkl"),map_location='cpu')print(len(bn_params))

相关文章:

BN体系理解——类封装复现

from pathlib import Path from typing import Optionalimport torch import torch.nn as nn from torch import Tensorclass BN(nn.Module):def __init__(self,num_features,momentum0.1,eps1e-8):##num_features是通道数"""初始化方法:param num_features:特征…...

请求和响应的概述

请求:在浏览器地址栏输入地址,点击回车请求服务器,这个过程就是一个请求过程。 响应:服务器根据浏览器发送的请求,返回数据到浏览器在网页上进行显示,这个过程就称之为响应。 针对Servlet的每次请求&…...

(深度学习快速入门)A Gentle Introduction to Graph Neural Networks 笔记

博客链接沐神讲解视频文章目录 一:什么是图二:常见数据如何表示为图(1)图像(2)文本(3)Real WorldA:分子B:社交网络C:论文引用D:其他三:图涉及的任务(1)图级别任务(2)节点级别任务(3)边级别任务四:使用图数据的挑战...

VIM指令

vim的工作模式 vim一般有6种工作模式。 普通模式:使用vim打开一个文件时默认模式,也叫命令模式,允许用户通过各种命令浏览代码、滚屏等操作。 插入模式:也可以叫做编辑模式,在普通模式下敲击 i 、a 或 o 就进入插入模…...

Android 10.0 framework层实现app默认全屏显示

1.前言 在10.0的系统开发中,在对于第三方app全屏显示的功能需求开发中,需要默认app全屏显示,针对这一个要求,就需要在系统启动app 的过程中,在绘制app阶段就设置全屏属性,接下来就实现这个功能 效果图如下: 2.framework层实现app默认全屏显示的核心类 frameworks\base\…...

【计算机网络黑皮书】传输层

【事先声明】 这是对于中科大的计算机网络的网课的学习笔记,感谢郑烇老师的无偿分享 书籍是《计算机网络(自顶向下方法 第6版)》 需要的可以私信我,无偿分享,课程简介下也有 课程链接 目录 传输服务与协议网络层与传输…...

轻量限制流量?阿里云轻量应用服务器月流量包收费说明

阿里云轻量应用服务器部分套餐限制月流量,轻量应用服务器按照套餐售卖,有的套餐限制月流量,有的不限制流量。像阿里云轻量2核2G3M带宽轻量服务器一年108元和轻量2核4G4M带宽一年297.98元12个月,这两款是不限制月流量的。阿里云百科…...

Linux手记

常用的配置文件 文件作用/etc/profile系统级别的shell配置文件,它包含了系统中所有用户的默认环境变量和系统级别的全局配置信息/etc/apt/apt.conf配置APT(Advanced Package Tool)软件包管理器的行为,包括代理等/etc/apt/sources…...

springboot配置

一、配置文件的加载顺序 SpringApplication从以下位置的application.properties文件加载属性,并将它们添加到Spring Environment中去,优先级如下: 当前目录的/config子目录(src\config)当前目录(跟src目录…...

大数据中的一些词汇解释

OLTP(online Transaction Prrocessing) OLTP是一个处理面向事务的数据的软件系统。术语“在线交易”是指实时完成活动,而不是批处理。此数据是结构化数据的常见来源,可作为许多分析过程的输入。OLTP交易讲究实时性,就…...

10月11-12日上课内容 Ansible

Ansible Ansible是一个基于Python开发的配置管理和应用部署工具,现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点,Pubbet和Saltstack能实现的功能,Ansible基本上都可以实现。 Ansible能批量配置、部署、管理上千台主机。比…...

android studio 我遇到的Task :app:compileDebugJavaWithJavac FAILED问题及解决过程

前几天一个网友在学习我的一个小项目的时候,发现无法达到目的,在帮他解决问题的过程中发现他用的是最近的giraffe版本的as,我用的是老版本,没办法打开他的项目,没办法只能卸载我的as,安装了最近版的diraffe…...

PLC电梯控制系统

目录 PLC电梯控制系统 1电梯简介 1.1电梯的基本分类 1.1.1按用途分类 1.1.2 按驱动系统分类 1.2 电梯的型号 1.3电梯的主要参数及规格尺寸 1.4电梯控制技术 1.5常用交流调速电梯的特点 1.6电梯的工作原理 2 PLC可编程序控制器 2.1 PLC的起源与发展 2.2 PLC控制系统…...

FastAPI学习-27 使用@app.api_route() 设置多种请求方式

对同一个访问函数设置多个http 请求方式 api_route 使用 使用methods 参数设置请求方式 from fastapi import FastAPIapp FastAPI() app.api_route(/demo/b, methods[get, post]) async def demo2(): return {"msg": "demo2 success"}判断请求方式…...

08. 机器学习- 线性回归

文章目录 线性回归 LINEAR REGRESSION 从本次课程开始,大部分时候我将不再将打印结果贴出来了,因为太占用篇幅。小伙伴可以根据我的输出执行敲一遍代码来进行学习和验证。 同样是为了节省篇幅,我也不会再一行行那么仔细的解释代码了&#xff…...

好奇喵 | PT(Private Tracker)——什么是P2P,什么是BT,啥子是PT?

前言 有时候会听到别人谈论pt,好奇猫病又犯了,啥子是pt? PT——你有pt吗?啥是pt? 从BT开始 BitTorrent是一种点对点(P2P)文件共享协议,用于高速下载和上传大型文件。它允许用户通…...

【Node.js】crypto 模块

crypto模块的目的是为了提供通用的加密和哈希算法。用纯JavaScript代码实现这些功能不是不可能,但速度会非常慢。 Nodejs用C/C实现这些算法后,通过cypto这个模块暴露为JavaScript接口,这样用起来方便,运行速度也快。 只要密钥发…...

vue父组件向子组件传值的方法

Vue父组件向子组件传值的方法有以下几种&#xff1a; Props&#xff08;属性&#xff09;&#xff1a;在父组件中通过在子组件标签上绑定属性的方式传递数据。子组件可以通过props选项接收并使用这些属性。适用于父组件需要向子组件传递初始值的情况。 示例&#xff1a; <…...

MATLAB算法实战应用案例精讲-【优化算法】高尔夫优化算法(GOA)(附MATLAB代码实现)

前言 高尔夫优化算法(Golf Optimization Algorithm, GOA),用以解决现实世界中的复杂优化问题。该成果于2023年8月发表在SCI期刊Biomimetics 。高尔夫球是一项户外运动,在个人或团队的场地上展开,由专业球杆熟练操纵。这项运动的基本原则决定了它的本质——将球从起始点推向…...

数组的reduce和reduceRight方法

1.reduce方法可用接收两个参数&#xff1a; 第一个参数&#xff1a;为一个回调函数&#xff0c;此回调函数又可以有四个参数 第1个参数&#xff1a;为上一次回调函数return的结果&#xff0c;首次默认为第二个参数值&#xff0c;如果没有第二个参数值&#xff0c;则默认当前数…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...