当前位置: 首页 > news >正文

SentenceTransformer使用多GPU加速向量化

文章目录

  • 前言
  • 代码


前言

当我们需要对大规模的数据向量化以存到向量数据库中时,且服务器上有多个GPU可以支配,我们希望同时利用所有的GPU来并行这一过程,加速向量化。

代码

就几行代码,不废话了

from sentence_transformers import SentenceTransformer#Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == '__main__':#Create a large list of 100k sentencessentences = ["This is sentence {}".format(i) for i in range(100000)]#Define the modelmodel = SentenceTransformer('all-MiniLM-L6-v2')#Start the multi-process pool on all available CUDA devicespool = model.start_multi_process_pool()#Compute the embeddings using the multi-process poolemb = model.encode_multi_process(sentences, pool)print("Embeddings computed. Shape:", emb.shape)#Optional: Stop the proccesses in the poolmodel.stop_multi_process_pool(pool)

注意:一定要加if __name__ == '__main__':这一句,不然报如下错:

RuntimeError: An attempt has been made to start a new process before thecurrent process has finished its bootstrapping phase.This probably means that you are not using fork to start yourchild processes and you have forgotten to use the proper idiomin the main module:if __name__ == '__main__':freeze_support()...The "freeze_support()" line can be omitted if the programis not going to be frozen to produce an executable.

其实官方已经给出代码啦,我只不过复制粘贴了一下,代码位置:computing_embeddings_multi_gpu.py

官方还给出了流式encode的例子,也是多GPU并行的,如下:

from sentence_transformers import SentenceTransformer, LoggingHandler
import logging
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdmlogging.basicConfig(format='%(asctime)s - %(message)s',datefmt='%Y-%m-%d %H:%M:%S',level=logging.INFO,handlers=[LoggingHandler()])#Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == '__main__':#Set paramsdata_stream_size = 16384  #Size of the data that is loaded into memory at oncechunk_size = 1024  #Size of the chunks that are sent to each processencode_batch_size = 128  #Batch size of the model#Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/streamdataset = load_dataset('yahoo_answers_topics', split='train', streaming=True)dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size)#Define the modelmodel = SentenceTransformer('all-MiniLM-L6-v2')#Start the multi-process pool on all available CUDA devicespool = model.start_multi_process_pool()for i, batch in enumerate(tqdm(dataloader)):#Compute the embeddings using the multi-process poolsentences = batch['best_answer']batch_emb = model.encode_multi_process(sentences, pool, chunk_size=chunk_size, batch_size=encode_batch_size)print("Embeddings computed for 1 batch. Shape:", batch_emb.shape)#Optional: Stop the proccesses in the poolmodel.stop_multi_process_pool(pool)

官方案例:computing_embeddings_streaming.py

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.105.01   Driver Version: 515.105.01   CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A800-SXM...  On   | 00000000:23:00.0 Off |                    0 |
| N/A   58C    P0   297W / 400W |  75340MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA A800-SXM...  On   | 00000000:29:00.0 Off |                    0 |
| N/A   71C    P0   352W / 400W |  80672MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA A800-SXM...  On   | 00000000:52:00.0 Off |                    0 |
| N/A   68C    P0   398W / 400W |  75756MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA A800-SXM...  On   | 00000000:57:00.0 Off |                    0 |
| N/A   58C    P0   341W / 400W |  75994MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   4  NVIDIA A800-SXM...  On   | 00000000:8D:00.0 Off |                    0 |
| N/A   56C    P0   319W / 400W |  70084MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   5  NVIDIA A800-SXM...  On   | 00000000:92:00.0 Off |                    0 |
| N/A   70C    P0   354W / 400W |  76314MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   6  NVIDIA A800-SXM...  On   | 00000000:BF:00.0 Off |                    0 |
| N/A   73C    P0   360W / 400W |  75876MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   7  NVIDIA A800-SXM...  On   | 00000000:C5:00.0 Off |                    0 |
| N/A   57C    P0   364W / 400W |  80404MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+

嘎嘎快啊

相关文章:

SentenceTransformer使用多GPU加速向量化

文章目录 前言代码 前言 当我们需要对大规模的数据向量化以存到向量数据库中时,且服务器上有多个GPU可以支配,我们希望同时利用所有的GPU来并行这一过程,加速向量化。 代码 就几行代码,不废话了 from sentence_transformers i…...

架构师-软件工程习题选择题

架构师-软件工程习题选择题 真题案例题 真题 c 瀑布模型:针对软件需求明确的情况,将前一个阶段做完,才能开始下一个阶段 原型模型:针对需求不明确的情况,快速搭建出系统原型,然后根据系统原型和客户确认需求…...

springboot单独在指定地方输出sql

一般线上项目都是将日志进行关闭,因为mybatis日志打印,时间长了,会占用大量的内存,如果我想在我指定的地方进行打印sql情况,怎么玩呢! 下面这个场景: 某天线上的项目出bug了,日志打印…...

gpio内部结构(一)

一,GPIO内部结构 1,保护二极管 * 引脚内部加上这两个保护二级管可以防止引脚外部过高或过低的电压输入。 * 当引脚电压高于 VDD_FT 或 VDD 时,上方的二极管导通吸收这个高电压。 * 当引脚电压低于 VSS 时,下方的二极管导通&…...

【C++14保姆级教程】变量模板,Labmda泛型

文章目录 前言一、变量模板(Variable Templates)1.1 变量模板是什么1.2 泛型大概使用1.3 示例代码11.4 示例代码21.5 示例代码3 二、Lambda泛型(Lambda Generics)2.1 Lambda表达式泛型是什么?2.2 函数原型怎么写&#…...

LLM - 旋转位置编码 RoPE 代码详解

目录 一.引言 二.RoPE 理论 1.RoPE 矩阵形式 2.RoPE 图例形式 3.RoPE 实践分析 三.RoPE 代码分析 1.源码获取 2.源码分析 3.rotary_emb 3.1 __init__ 3.2 forward 4.apply_rotary_pos_emb 4.1 rotate_half 4.2 apply_rotary_pos_emb 四.RoPE 代码实现 1.Q/K/V …...

Vue之VueX知识探索(一起了解关于VueX的新世界)

目录 前言 一、VueX简介 1. 什么是VueX 2. VueX的作用及重要性 3. VueX的应用场景 二、VueX的使用准备工作 1. 下载安装VueX 2. vuex获取值以及改变值 2.1 创建所需示例 2.2 将创建好的.vue文件页面显示 2.3 创建VueX的相关文件 2.4 配置VueX四个js文件 2.5 加载到vue示…...

提升吃鸡战斗力,分享顶级作战干货!

大家好!作为一名吃鸡玩家,你是否也希望提高自己的游戏战斗力?在这里,我将为大家分享一些顶级游戏作战干货,以及方便吃鸡作图和查询装备皮肤库存的实用工具。 首先,让我们提到绝地求生作图工具推荐。通过使用…...

【rust】cargo的概念和使用方法

啥是cargo 包管理器 cargo 提供了一系列的工具,从项目的建立、构建到测试、运行直至部署,为 Rust 项目的管理提供尽可能完整的手段,与 Rust 语言及其编译器 rustc 紧密结合。 创建项目 使用cargo创建一个项目: $ cargo new wo…...

MySQL数据库——SQL优化(2)-order by 优化、group by 优化

目录 order by 优化 概述 测试 优化原则 group by 优化 测试 优化原则 order by 优化 概述 MySQL的排序,有两种方式: Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sortbuffer中完成排…...

C++DAY43

#include <iostream>using namespace std;//封装 沙发 类 class Sofa { private:string living; public:Sofa(){cout << "沙发的无参构造函数" << endl;}Sofa(string l):living(l){cout << "沙发的有参构造函数" << endl;}v…...

大模型的超级“外脑”——向量数据库解决大模型的三大挑战

随着AI大模型产品及应用呈现爆发式增长,新的AI时代已经到来。向量数据库可与大语言模型配合使用,解决大模型落地过程中的痛点,已成为企业数据处理和应用大模型的必选项。在近日举行的华为全联接大会2023期间,华为云正式发布GaussDB向量数据库。GaussDB向量数据库基于GaussD…...

opencv读取摄像头并读取时间戳

下面这行代码是获取摄像头每帧的时间戳&#xff1a; double timestamp cap.get(cv::CAP_PROP_POS_MSEC); 改变帧率的方法是&#xff1a; cap.set(cv::CAP_PROP_FPS, 30); //帧率改为30 但是实际测试时发现帧率并未被改变&#xff0c;这个可能和VideoCapture cap(cv::CAP_V…...

WebRTC 系列(四、多人通话,H5、Android、iOS)

WebRTC 系列&#xff08;三、点对点通话&#xff0c;H5、Android、iOS&#xff09; 上一篇博客中&#xff0c;我们已经实现了点对点通话&#xff0c;即一对一通话&#xff0c;这一次就接着实现多人通话。多人通话的实现方式呢也有好几种方案&#xff0c;这里我简单介绍两种方案…...

uniapp 点击 富文本元素 图片 可以预览(非nvue)

我使用的是uniapp 官方推荐的组件 rich-text&#xff0c;一般我能用官方级用官方&#xff0c;更有保障一些。 一、整体逻辑 1. 定义一段html标签字符串&#xff0c;里面包含图片 2. 将字符串放入rich-text组件中&#xff0c;绑定点击事件itemclick 3. 通过点击事件获取到图片ur…...

【2023年11月第四版教材】第24章《法律法规与标准规范》(合集篇)

第24章《法律法规与标准规范》(合集篇&#xff09; 1 民法典&#xff08;合同编&#xff09;2 招标投标法2.1 关于时间的总结2.2 内容 3 政府采购法4 专利法5 著作权法6 商标法7 网络安全法8 数据安全法 1 民法典&#xff08;合同编&#xff09; 1、要约是希望和他人订立合同的…...

提升战斗力!吃鸡行家分享顶级游戏干货,助你轻松拿下绝地求生

作为吃鸡行家&#xff0c;我们都知道&#xff0c;在绝地求生中提高战斗力至关重要。今天我来分享一些独特的干货&#xff0c;帮助你成为顶级的吃鸡玩家&#xff0c;并分享一些方便吃鸡作图、装备皮肤库存展示和查询的技巧。 首先&#xff0c;让我们来谈谈绝地求生作图工具推荐。…...

C语言练习百题之宏#define命令

宏&#xff08;Macro&#xff09;是C语言中的一种预处理指令&#xff0c;它使用#define命令定义符号常量、宏函数和代码片段。下面列举了各种宏的应用场景以及相关注意事项&#xff1a; 定义常量&#xff1a; #define PI 3.14159265注意事项&#xff1a;使用宏定义常量可以提高…...

阿里云存储I/O性能、IOPS和吞吐量是什么意思?

云盘的存储I/O性能是什么&#xff1f;存储I/O性能又称存储读写性能&#xff0c;指不同阿里云服务器ECS实例规格挂载云盘时&#xff0c;可以达到的性能表现&#xff0c;包括IOPS和吞吐量。阿里云百科网aliyunbaike.com分享阿里云服务器云盘&#xff08;系统盘或数据盘&#xff0…...

Linux知识点 -- 网络基础 -- 数据链路层

Linux知识点 – 网络基础 – 数据链路层 文章目录 Linux知识点 -- 网络基础 -- 数据链路层一、数据链路层1.以太网2.以太网帧格式3.重谈局域网原理4.MAC地址5.MTU6.查看硬件地址和MTU的命令7.ARP协议 二、其他重要协议或技术1.DNS&#xff08;Domain Name System&#xff09;2.…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...