当前位置: 首页 > news >正文

[Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现

目录

模型初始化信息:

模型实现:

多变量损失函数:

多变量梯度下降实现:

多变量梯度实现:

多变量梯度下降实现:


之前部分实现的梯度下降线性预测模型中的training example只有一个特征属性:房屋面积,这显然是不符合实际情况的,这里增加特征属性的数量再实现一次梯度下降线性预测模型。

这里回顾一下梯度下降线性模型的实现方法:

  1. 实现线性模型:f = w*x + b,模型参数w,b待定
  2. 寻找最优的w,b组合:

             (1)引入衡量模型优劣的cost function:J(w,b) ——损失函数或者代价函数

             (2)损失函数值最小的时候,模型最接近实际情况:通过梯度下降法来寻找最优w,b组合

模型初始化信息:

  • 新的房子的特征有:房子面积、卧室数、楼层数、房龄共4个特征属性。
Size (sqft)Number of BedroomsNumber of floorsAge of HomePrice (1000s dollars)
21045145460
14163240232
852213517

 上面表中的训练样本有3个,输入特征矩阵模型为:

具体代码实现为,X_train是输入矩阵,y_train是输出矩阵

X_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40],[852, 2, 1, 35]])
y_train = np.array([460, 232, 178])

模型参数w,b矩阵:

代码实现:w中的每一个元素对应房屋的一个特征属性

b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -26.42131618])

模型实现:

def predict(x, w, b): """single predict using linear regressionArgs:x (ndarray): Shape (n,) example with multiple featuresw (ndarray): Shape (n,) model parameters   b (scalar):             model parameter Returns:p (scalar):  prediction"""p = np.dot(x, w) + b     return p   

多变量损失函数:

J(w,b)为:

代码实现为:

def compute_cost(X, y, w, b): """compute costArgs:X (ndarray (m,n)): Data, m examples with n featuresy (ndarray (m,)) : target valuesw (ndarray (n,)) : model parameters  b (scalar)       : model parameterReturns:cost (scalar): cost"""m = X.shape[0]cost = 0.0for i in range(m):                                f_wb_i = np.dot(X[i], w) + b           #(n,)(n,) = scalar (see np.dot)cost = cost + (f_wb_i - y[i])**2       #scalarcost = cost / (2 * m)                      #scalar    return cost

多变量梯度下降实现:

多变量梯度实现:

def compute_gradient(X, y, w, b): """Computes the gradient for linear regression Args:X (ndarray (m,n)): Data, m examples with n featuresy (ndarray (m,)) : target valuesw (ndarray (n,)) : model parameters  b (scalar)       : model parameterReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. """m,n = X.shape           #(number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m):                             err = (np.dot(X[i], w) + b) - y[i]   for j in range(n):                         dj_dw[j] = dj_dw[j] + err * X[i, j]    dj_db = dj_db + err                        dj_dw = dj_dw / m                                dj_db = dj_db / m                                return dj_db, dj_dw

多变量梯度下降实现:

def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters): """Performs batch gradient descent to learn theta. Updates theta by taking num_iters gradient steps with learning rate alphaArgs:X (ndarray (m,n))   : Data, m examples with n featuresy (ndarray (m,))    : target valuesw_in (ndarray (n,)) : initial model parameters  b_in (scalar)       : initial model parametercost_function       : function to compute costgradient_function   : function to compute the gradientalpha (float)       : Learning ratenum_iters (int)     : number of iterations to run gradient descentReturns:w (ndarray (n,)) : Updated values of parameters b (scalar)       : Updated value of parameter """# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []w = copy.deepcopy(w_in)  #avoid modifying global w within functionb = b_infor i in range(num_iters):# Calculate the gradient and update the parametersdj_db,dj_dw = gradient_function(X, y, w, b)   ##None# Update Parameters using w, b, alpha and gradientw = w - alpha * dj_dw               ##Noneb = b - alpha * dj_db               ##None# Save cost J at each iterationif i<100000:      # prevent resource exhaustion J_history.append( cost_function(X, y, w, b))# Print cost every at intervals 10 times or as many iterations if < 10if i% math.ceil(num_iters / 10) == 0:print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f}   ")return w, b, J_history #return final w,b and J history for graphing

梯度下降算法测试:

# initialize parameters
initial_w = np.zeros_like(w_init)
initial_b = 0.
# some gradient descent settings
iterations = 1000
alpha = 5.0e-7
# run gradient descent 
w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w, initial_b,compute_cost, compute_gradient, alpha, iterations)
print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
m,_ = X_train.shape
for i in range(m):print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value: {y_train[i]}")# plot cost versus iteration  
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 4))
ax1.plot(J_hist)
ax2.plot(100 + np.arange(len(J_hist[100:])), J_hist[100:])
ax1.set_title("Cost vs. iteration");  ax2.set_title("Cost vs. iteration (tail)")
ax1.set_ylabel('Cost')             ;  ax2.set_ylabel('Cost') 
ax1.set_xlabel('iteration step')   ;  ax2.set_xlabel('iteration step') 
plt.show()

结果为:

可以看到,右图中损失函数在traning次数结束之后还一直在下降,没有找到最佳的w,b组合。具体解决方法,后面会有更新。

完整的代码为:

import copy, math
import numpy as np
import matplotlib.pyplot as pltnp.set_printoptions(precision=2)  # reduced display precision on numpy arraysX_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_train = np.array([460, 232, 178])b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -26.42131618])def predict(x, w, b):"""single predict using linear regressionArgs:x (ndarray): Shape (n,) example with multiple featuresw (ndarray): Shape (n,) model parametersb (scalar):             model parameterReturns:p (scalar):  prediction"""p = np.dot(x, w) + breturn pdef compute_cost(X, y, w, b):"""compute costArgs:X (ndarray (m,n)): Data, m examples with n featuresy (ndarray (m,)) : target valuesw (ndarray (n,)) : model parametersb (scalar)       : model parameterReturns:cost (scalar): cost"""m = X.shape[0]cost = 0.0for i in range(m):f_wb_i = np.dot(X[i], w) + b  # (n,)(n,) = scalar (see np.dot)cost = cost + (f_wb_i - y[i]) ** 2  # scalarcost = cost / (2 * m)  # scalarreturn costdef compute_gradient(X, y, w, b):"""Computes the gradient for linear regressionArgs:X (ndarray (m,n)): Data, m examples with n featuresy (ndarray (m,)) : target valuesw (ndarray (n,)) : model parametersb (scalar)       : model parameterReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w.dj_db (scalar):       The gradient of the cost w.r.t. the parameter b."""m, n = X.shape  # (number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m):err = (np.dot(X[i], w) + b) - y[i]for j in range(n):dj_dw[j] = dj_dw[j] + err * X[i, j]dj_db = dj_db + errdj_dw = dj_dw / mdj_db = dj_db / mreturn dj_db, dj_dwdef gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters):"""Performs batch gradient descent to learn theta. Updates theta by takingnum_iters gradient steps with learning rate alphaArgs:X (ndarray (m,n))   : Data, m examples with n featuresy (ndarray (m,))    : target valuesw_in (ndarray (n,)) : initial model parametersb_in (scalar)       : initial model parametercost_function       : function to compute costgradient_function   : function to compute the gradientalpha (float)       : Learning ratenum_iters (int)     : number of iterations to run gradient descentReturns:w (ndarray (n,)) : Updated values of parametersb (scalar)       : Updated value of parameter"""# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []w = copy.deepcopy(w_in)  # avoid modifying global w within functionb = b_infor i in range(num_iters):# Calculate the gradient and update the parametersdj_db, dj_dw = gradient_function(X, y, w, b)  ##None# Update Parameters using w, b, alpha and gradientw = w - alpha * dj_dw  ##Noneb = b - alpha * dj_db  ##None# Save cost J at each iterationif i < 100000:  # prevent resource exhaustionJ_history.append(cost_function(X, y, w, b))# Print cost every at intervals 10 times or as many iterations if < 10if i % math.ceil(num_iters / 10) == 0:print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f}   ")return w, b, J_history  # return final w,b and J history for graphing# initialize parameters
initial_w = np.zeros_like(w_init)
initial_b = 0.
# some gradient descent settings
iterations = 1000
alpha = 5.0e-7
# run gradient descent
w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w, initial_b,compute_cost, compute_gradient,alpha, iterations)
print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
m,_ = X_train.shape
for i in range(m):print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value: {y_train[i]}")# plot cost versus iteration
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 4))
ax1.plot(J_hist)
ax2.plot(100 + np.arange(len(J_hist[100:])), J_hist[100:])
ax1.set_title("Cost vs. iteration");  ax2.set_title("Cost vs. iteration (tail)")
ax1.set_ylabel('Cost')             ;  ax2.set_ylabel('Cost')
ax1.set_xlabel('iteration step')   ;  ax2.set_xlabel('iteration step')
plt.show()

相关文章:

[Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现

目录 模型初始化信息&#xff1a; 模型实现&#xff1a; 多变量损失函数&#xff1a; 多变量梯度下降实现&#xff1a; 多变量梯度实现&#xff1a; 多变量梯度下降实现&#xff1a; 之前部分实现的梯度下降线性预测模型中的training example只有一个特征属性&#xff1a…...

LCR 078. 合并 K 个升序链表

LCR 078. 合并 K 个升序链表 题目链接&#xff1a;LCR 078. 合并 K 个升序链表 代码如下&#xff1a; class Solution { public:ListNode* mergeKLists(vector<ListNode*>& lists) {ListNode *lsnullptr;for(int i0;i<lists.size();i){lsmergeList(ls,lists[i])…...

JVM面试题:(三)GC和垃圾回收算法

GC: 垃圾回收算法&#xff1a; GC最基础的算法有三种&#xff1a; 标记 -清除算法、复制算法、标记-压缩算法&#xff0c;我们常用的垃圾回收器一般 都采用分代收集算法。 标记 -清除算法&#xff0c;“标记-清除”&#xff08;Mark-Sweep&#xff09;算法&#xff0c;如它的…...

hive建表指定列分隔符为多字符分隔符实战(默认只支持单字符)

1、背景&#xff1a; 后端日志采集完成&#xff0c;清洗入hive表的过程中&#xff0c;发现字段之间的单一字符的分割符号已经不能满足列分割需求&#xff0c;因为字段值本身可能包含分隔符。所以列分隔符使用多个字符列分隔符迫在眉睫。 hive在建表时&#xff0c;通常使用ROW …...

android.app.RemoteServiceException: can‘t deliver broadcast

日常报错记录 android.app.RemoteServiceException: cant deliver broadcast W BroadcastQueue: Cant deliver broadcast to com.broadcast.test(pid 1769). Crashing it.E AndroidRuntime: FATAL EXCEPTION: main E AndroidRuntime: Process: com.broadcast.test, PID: 1769…...

信创办公–基于WPS的EXCEL最佳实践系列 (单元格与行列)

信创办公–基于WPS的EXCEL最佳实践系列 &#xff08;单元格与行列&#xff09; 目录 应用背景操作步骤1、插入和删除行和列2、合并单元格3、调整行高与列宽4、隐藏行与列5、修改单元格对齐和缩进6、更改字体7、使用格式刷8、设置单元格内的文本自动换行9、应用单元格样式10、插…...

VsCode同时编译多个C文件

VsCode默认只能编译单个C文件&#xff0c;想要编译多个文件&#xff0c;需要额外进行配置 第一种方法 ——> 通过手动指定要编译的文件 g -g .\C文件1 .\C文件2 -o 编译后exe名称 例如我将demo.c和extern.c同时编译得到haha.exe g -g .\demo.c .\extern.c -o haha 第二种…...

Android绑定式服务

Github:https://github.com/MADMAX110/Odometer 启动式服务对于后台操作很合适&#xff0c;不过需要一个更有交互性的服务。 接下来构建这样一个应用&#xff1a; 1、创建一个绑定式服务的基本版本&#xff0c;名为OdometerService 我们要为它增加一个方法getDistance()&#x…...

系统韧性研究(1)| 何谓「系统韧性」?

过去十年&#xff0c;系统韧性作为一个关键问题被广泛讨论&#xff0c;在数据中心和云计算方面尤甚&#xff0c;同时它对赛博物理系统也至关重要&#xff0c;尽管该术语在该领域不太常用。大伙都希望自己的系统具有韧性&#xff0c;但这到底意味着什么&#xff1f;韧性与其他质…...

使用Perl脚本编写爬虫程序的一些技术问题解答

网络爬虫是一种强大的工具&#xff0c;用于从互联网上收集和提取数据。Perl 作为一种功能强大的脚本语言&#xff0c;提供了丰富的工具和库&#xff0c;使得编写的爬虫程序变得简单而灵活。在使用的过程中大家会遇到一些问题&#xff0c;本文将通过问答方式&#xff0c;解答一些…...

SAP内部转移价格(利润中心转移价格)的条件

SAP内部转移价格&#xff08;利润中心转移价格&#xff09; SAP内部转移价格&#xff08;利润中心转移价格&#xff09; SAP内部转移价格&#xff08;利润中心转移价格&#xff09;这个听了很多人说过&#xff0c;但是利润中心转移定价需要具备什么条件。没有找到具体的文档。…...

WRF如何批量输出文件添加或删除文件名后缀

1. 批量添加文件名后缀 #1----批量添加文件名后缀&#xff08;.nc&#xff09;。#指定wrfout文件所在的文件夹 path "/mnt/wtest1/"#列出路径path下所有的文件 file_names os.listdir(path) #遍历在path路径下所有以wrfout_d01开头的文件&#xff0c;在os.path…...

Ubuntu右上角不显示网络的图标解决办法

一.line5改为true sudo vim /etc/NetworkManager/NetworkManager.conf 二.重启网卡 sudo service network-manager stop sudo mv /var/lib/NetworkManager/NetworkManager.state /tmp sudo service network-manager start...

AM@数列极限

文章目录 abstract极限&#x1f47a;极限的主要问题 数列极限数列极限的定义 ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述极限表达式成立的证明极限发散证明常用数列极限数列极限的几何意义例 函数的极限 abstract 数列极限 极限&#x1f47a; 极限分为数列的极限和函数的极限…...

Vue-2.3v-model原理

原理&#xff1a;v-model本质上是一个语法糖&#xff0c;例如应用在输入框上&#xff0c;就是value属性和input事件的合写。 作用&#xff1a;提供数据的双向绑定 1&#xff09;数据变&#xff0c;视图跟着变:value 2&#xff09;视图变&#xff0c;数据跟着变input 注意&a…...

​左手 Serverless,右手 AI,7 年躬身的古籍修复之路

作者&#xff1a;宋杰 “AI 可以把我们思维体系当中&#xff0c;过度专业化、过度细分的这些所谓的知识都替代掉&#xff0c;让我们集中精力去体验自己的生命。我挺幸运的&#xff0c;代码能够有 AI 辅助&#xff0c;也能够有 Serverless 解决我的运营成本问题。Serverless 它…...

计算mask的体素数量

import numpy as np import nibabel as nib # 用于处理神经影像数据的库 # 从文件中加载mask图像 mask_image nib.load(rE:\mask.nii.gz) # 获取图像数据 mask_data mask_image.get_fdata() # 计算非零像素的数量&#xff0c;即白质骨架的体素总数 voxel_count np.count_no…...

VR全景营销颠覆传统营销,让消费者身临其境

随着VR的普及&#xff0c;各种VR产品、功能开始层出不穷&#xff0c;并且在多个领域都有落地应用&#xff0c;例如文旅、景区、酒店、餐饮、工厂、地产、汽车等&#xff0c;在这个“内容为王”的时代&#xff0c;VR全景展示也是一种新的内容表达方式。 VR全景营销让消费者沉浸式…...

FreeRTOS学习笔记——四、任务的定义与任务切换的实现

FreeRTOS学习笔记——四、任务的定义与任务切换的实现 0 前言1 什么是任务2 创建任务2.1 定义任务栈2.2 定义任务函数2.3 定义任务控制块2.4 实现任务创建函数2.4.1 任务创建函数 —— xTaskCreateStatic()函数2.4.2 创建新任务——prvInitialiseNewTask()函数2.4.3 初始化任务…...

js 之让人迷惑的闭包 03

文章目录 一、闭包是什么&#xff1f; &#x1f926;‍♂️二、闭包 &#x1f60e;三、使用场景 &#x1f601;四、使用场景&#xff08;2&#xff09; &#x1f601;五、闭包的原理六、思考总结一、 更深层次了解闭包&#xff0c;分析以下代码执行过程二、闭包三、闭包定义四、…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...