当前位置: 首页 > news >正文

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;
2.运行环境为Matlab2018b;
3.输入多个特征,分四类预测;
4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;
5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输…...

解决echarts配置滚动(dataZoom)后导出图片数据不全问题

先展现一个echarts&#xff0c;并配置dataZoom&#xff0c;每页最多10条数据&#xff0c;超出滚动 <div class"echartsBox" id"echartsBox"></div>onMounted(() > {nextTick(() > {var chartDom document.getElementById(echartsBox);…...

【vue3+ts】项目初始化

1、winr呼出cmd&#xff0c;输入构建命令 //用vite构建 npm init vitelatest//用cli脚手架构建 npm init vurlatest2、设置vscode插件 搜索volar&#xff0c;安装前面两个 如果安装了vue2的插件vetur&#xff0c;要禁用掉&#xff0c;否则插件会冲突...

c++视觉图像----扩充边界

图像扩充边界 #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg", cv::IMREAD_COLOR);if (image.empty()) {std::cerr << "Could not open or find the imag…...

邮政编码,格式校验:@ZipCode(自定义注解)

目标 自定义一个用于校验邮政编码格式的注解ZipCode&#xff0c;能够和现有的 Validation 兼容&#xff0c;使用方式和其他校验注解保持一致&#xff08;使用 Valid 注解接口参数&#xff09;。 校验逻辑 有效格式 不能包含空格&#xff1b;应为6位数字&#xff1b; 不校验…...

Appium自动化测试框架:关键字驱动+数据驱动

1. 关键字驱动框架简介 原理及特点 关键字驱动测试是数据驱动测试的一种改进类型&#xff0c;它也被称为表格驱动测试或者基于动作字的测试。主要关键字包括三类&#xff1a;被操作对象&#xff08;Item&#xff09;、操作行为&#xff08;Operation&#xff09;和操作值&…...

简单多状态dp【动态规划】

目录 一、按摩师 二、打家劫舍 三、删除并获得点数 四、粉刷房子 五、买卖股票的最佳时机 六、买卖股票的最佳时机&#xff08;含手续费&#xff09; 七、买卖股票的最佳时机III 八、买卖股票的最佳时机IV 一、按摩师 class Solution { public:int massage(vector<int>…...

OpenCV中initUndistortRectifyMap ()函数与十四讲中去畸变公式的区别探究

文章目录 1.十四讲中的去畸变公式2. OpenCV中的去畸变公式3. 4个参数和8个参数之间的区别4.initUndistortRectifyMap()函数源码 最近在使用OpenCV对鱼眼相机图像去畸变时发现一个问题&#xff0c;基于针孔模型去畸变时所使用的参数和之前十四讲以及视觉SLAM中的畸变系数有一点不…...

【C++】C++11——智能指针、内存泄漏、智能指针的使用和原理、RAII、auto_ptr、unique_ptr、shared_ptr、weak_ptr

文章目录 C117.智能指针7.1内存泄漏7.2智能指针的概念7.3智能指针的使用7.3.1 auto_ptr7.3.2 unique_ptr7.3.3 shared_ptr7.3.4 weak_ptr C11 7.智能指针 7.1内存泄漏 什么是内存泄漏&#xff1a; 内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏…...

EDUSRC-记某擎未授权与sql注入

目录 360天擎 - 未授权与sql注入 信息收集 FOFA语法 鹰图搜索 360天擎未授权访问 - 数据库信息泄露 漏洞复现 修复方案 360天擎终端安全管理系统ccid处SQL注入 漏洞复现 手动测试方法 修复方案 360天擎 - 未授权与sql注入 通常访问的页面如下&#xff0c;存在登录框…...

1688拍立淘API接口分享

拍立淘接口&#xff0c;顾名思义&#xff0c;就是通过图片搜索到相关商品列表。通过此接口&#xff0c;可以实现图片搜索爆款商品等功能。 接口地址&#xff1a;1688.item_search_img 公共参数 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&…...

昇腾910使用记录

一. 压缩文件和解压文件 1. 压缩文件 tar -czvf UNITE-main.tar.gz ./UNITE-main/2. 解压文件 tar -xvf ./UNITE-main/二. CUDA更改为NPU data[label] data[label].cuda() data[instance] data[instance].cuda() data[image] data[image].cuda()更改为 data[label] da…...

从一部iPhone手机看芯片的分类

目录 问题 iPhone X 手机处理器&#xff1a;A11 iPhone X 的两大存储芯片 数字 IC CPU&#xff1a;计算设备的运算核心和控制核心 GPU&#xff1a;图形处理器 ASIC&#xff1a;为解决特定应用问题而定制设计的集成电路 存储芯片&#xff1a;DRAM 和 NAND Flash iPhone…...

arm day 7

完成字符串收发函数的封装并且验证现象&#xff0c;一个字符串发送接受后会有‘\n’ \r src/uart.c #include"uart.h"void uart4_init() {//设置UART4的RCc时钟使能//RCC_MP_APB1ENSETR[16]->1RCC->MP_APB1ENSETR | (0x1<<16);//设置GPIOB和GPIOG的时钟…...

Java基础面试-面向对象

什么是面向对象&#xff1f; 对比面向过程&#xff0c;是两种不同的处理问题角度 面向过程更注重事情的每一个步骤及顺序&#xff0c;面向对象更注重事情有哪些参与者&#xff08;对象&#xff09;&#xff0c;及各自需要做什么 比如洗衣机洗衣服 面向过程会将任务拆解成一系…...

GCC vs. G++:C 与 C++ 编译器的差异和比较

本文将介绍 GCC&#xff08;GNU Compiler Collection&#xff09;和 G 编译器的区别&#xff0c;并对它们在 C 和 C 程序开发中的特性和用法进行比较和总结。 引言 在 C 和 C 程序开发中&#xff0c;选择合适的编译器是至关重要的。GCC&#xff08;GNU Compiler Collection&a…...

MAC m系列docker login报错

错误&#xff1a;ERROR: failed to solve: XXX error getting credentials - err: exit status 1, out: 解决&#xff1a; vi ~/.docker/config.jsonzsxzsx [15时55分55秒] [~] { {"auths": {"harbor-g42c.corp.matrx.team": {"auth": "…...

Redis通用指令和五大基本数据类型常用指令总结

通用指令 keys parttern 查询key (parttern即通配符&#xff0c;不是正则表达式&#xff0c;例如 keys a? 匹配以a开头的长度为2的key) del key 删除key exists key 获取key是否存在 type key 获取key的类型 expire key seconds 为指定key设置有效期&#xff0c;单位秒 …...

uCharts常用图表组件demo

带渐变阴影的曲线图 <view class"charts-box"><qiun-data-charts type"area" :opts"opts" :chartData"chartData" :ontouch"true":background"rgba(256,256,256,0)" /> </view>data(){return{…...

VNC:Timed out waiting for a response from the computer

VNC的服务端使用的是TigerVNC&#xff0c;客户端使用的是RealVNC TigerVNC按其他博客配好后&#xff0c;防火墙ip什么的都配了&#xff0c;vnc客户端怎么连都是超时。 这里建议大家可以尝试一下重启服务器。我的是CentOS的 shutdown -r now 配了2天&#xff0c;最后服务器重启…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...