当前位置: 首页 > news >正文

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;
2.运行环境为Matlab2018b;
3.输入多个特征,分四类预测;
4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;
5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输…...

解决echarts配置滚动(dataZoom)后导出图片数据不全问题

先展现一个echarts&#xff0c;并配置dataZoom&#xff0c;每页最多10条数据&#xff0c;超出滚动 <div class"echartsBox" id"echartsBox"></div>onMounted(() > {nextTick(() > {var chartDom document.getElementById(echartsBox);…...

【vue3+ts】项目初始化

1、winr呼出cmd&#xff0c;输入构建命令 //用vite构建 npm init vitelatest//用cli脚手架构建 npm init vurlatest2、设置vscode插件 搜索volar&#xff0c;安装前面两个 如果安装了vue2的插件vetur&#xff0c;要禁用掉&#xff0c;否则插件会冲突...

c++视觉图像----扩充边界

图像扩充边界 #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg", cv::IMREAD_COLOR);if (image.empty()) {std::cerr << "Could not open or find the imag…...

邮政编码,格式校验:@ZipCode(自定义注解)

目标 自定义一个用于校验邮政编码格式的注解ZipCode&#xff0c;能够和现有的 Validation 兼容&#xff0c;使用方式和其他校验注解保持一致&#xff08;使用 Valid 注解接口参数&#xff09;。 校验逻辑 有效格式 不能包含空格&#xff1b;应为6位数字&#xff1b; 不校验…...

Appium自动化测试框架:关键字驱动+数据驱动

1. 关键字驱动框架简介 原理及特点 关键字驱动测试是数据驱动测试的一种改进类型&#xff0c;它也被称为表格驱动测试或者基于动作字的测试。主要关键字包括三类&#xff1a;被操作对象&#xff08;Item&#xff09;、操作行为&#xff08;Operation&#xff09;和操作值&…...

简单多状态dp【动态规划】

目录 一、按摩师 二、打家劫舍 三、删除并获得点数 四、粉刷房子 五、买卖股票的最佳时机 六、买卖股票的最佳时机&#xff08;含手续费&#xff09; 七、买卖股票的最佳时机III 八、买卖股票的最佳时机IV 一、按摩师 class Solution { public:int massage(vector<int>…...

OpenCV中initUndistortRectifyMap ()函数与十四讲中去畸变公式的区别探究

文章目录 1.十四讲中的去畸变公式2. OpenCV中的去畸变公式3. 4个参数和8个参数之间的区别4.initUndistortRectifyMap()函数源码 最近在使用OpenCV对鱼眼相机图像去畸变时发现一个问题&#xff0c;基于针孔模型去畸变时所使用的参数和之前十四讲以及视觉SLAM中的畸变系数有一点不…...

【C++】C++11——智能指针、内存泄漏、智能指针的使用和原理、RAII、auto_ptr、unique_ptr、shared_ptr、weak_ptr

文章目录 C117.智能指针7.1内存泄漏7.2智能指针的概念7.3智能指针的使用7.3.1 auto_ptr7.3.2 unique_ptr7.3.3 shared_ptr7.3.4 weak_ptr C11 7.智能指针 7.1内存泄漏 什么是内存泄漏&#xff1a; 内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏…...

EDUSRC-记某擎未授权与sql注入

目录 360天擎 - 未授权与sql注入 信息收集 FOFA语法 鹰图搜索 360天擎未授权访问 - 数据库信息泄露 漏洞复现 修复方案 360天擎终端安全管理系统ccid处SQL注入 漏洞复现 手动测试方法 修复方案 360天擎 - 未授权与sql注入 通常访问的页面如下&#xff0c;存在登录框…...

1688拍立淘API接口分享

拍立淘接口&#xff0c;顾名思义&#xff0c;就是通过图片搜索到相关商品列表。通过此接口&#xff0c;可以实现图片搜索爆款商品等功能。 接口地址&#xff1a;1688.item_search_img 公共参数 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&…...

昇腾910使用记录

一. 压缩文件和解压文件 1. 压缩文件 tar -czvf UNITE-main.tar.gz ./UNITE-main/2. 解压文件 tar -xvf ./UNITE-main/二. CUDA更改为NPU data[label] data[label].cuda() data[instance] data[instance].cuda() data[image] data[image].cuda()更改为 data[label] da…...

从一部iPhone手机看芯片的分类

目录 问题 iPhone X 手机处理器&#xff1a;A11 iPhone X 的两大存储芯片 数字 IC CPU&#xff1a;计算设备的运算核心和控制核心 GPU&#xff1a;图形处理器 ASIC&#xff1a;为解决特定应用问题而定制设计的集成电路 存储芯片&#xff1a;DRAM 和 NAND Flash iPhone…...

arm day 7

完成字符串收发函数的封装并且验证现象&#xff0c;一个字符串发送接受后会有‘\n’ \r src/uart.c #include"uart.h"void uart4_init() {//设置UART4的RCc时钟使能//RCC_MP_APB1ENSETR[16]->1RCC->MP_APB1ENSETR | (0x1<<16);//设置GPIOB和GPIOG的时钟…...

Java基础面试-面向对象

什么是面向对象&#xff1f; 对比面向过程&#xff0c;是两种不同的处理问题角度 面向过程更注重事情的每一个步骤及顺序&#xff0c;面向对象更注重事情有哪些参与者&#xff08;对象&#xff09;&#xff0c;及各自需要做什么 比如洗衣机洗衣服 面向过程会将任务拆解成一系…...

GCC vs. G++:C 与 C++ 编译器的差异和比较

本文将介绍 GCC&#xff08;GNU Compiler Collection&#xff09;和 G 编译器的区别&#xff0c;并对它们在 C 和 C 程序开发中的特性和用法进行比较和总结。 引言 在 C 和 C 程序开发中&#xff0c;选择合适的编译器是至关重要的。GCC&#xff08;GNU Compiler Collection&a…...

MAC m系列docker login报错

错误&#xff1a;ERROR: failed to solve: XXX error getting credentials - err: exit status 1, out: 解决&#xff1a; vi ~/.docker/config.jsonzsxzsx [15时55分55秒] [~] { {"auths": {"harbor-g42c.corp.matrx.team": {"auth": "…...

Redis通用指令和五大基本数据类型常用指令总结

通用指令 keys parttern 查询key (parttern即通配符&#xff0c;不是正则表达式&#xff0c;例如 keys a? 匹配以a开头的长度为2的key) del key 删除key exists key 获取key是否存在 type key 获取key的类型 expire key seconds 为指定key设置有效期&#xff0c;单位秒 …...

uCharts常用图表组件demo

带渐变阴影的曲线图 <view class"charts-box"><qiun-data-charts type"area" :opts"opts" :chartData"chartData" :ontouch"true":background"rgba(256,256,256,0)" /> </view>data(){return{…...

VNC:Timed out waiting for a response from the computer

VNC的服务端使用的是TigerVNC&#xff0c;客户端使用的是RealVNC TigerVNC按其他博客配好后&#xff0c;防火墙ip什么的都配了&#xff0c;vnc客户端怎么连都是超时。 这里建议大家可以尝试一下重启服务器。我的是CentOS的 shutdown -r now 配了2天&#xff0c;最后服务器重启…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...