当前位置: 首页 > news >正文

[Framework] Android Handler 工作原理

Android 中的 Handler 都被人说烂了,但是还是想多说一次,因为在 Android 的系统中它真的非常重要而且它的机制并没有很复杂,无论是新手和老手都可以好好学习下,这对理解 Android 系统很重要,所以说学习的性价比非常高。
Android 中 IPC 跨进程通信主要依靠 Binder , 而同一个进程的通信就主要依靠 Handler

这里先简单描述下 Handler 的工作流程:
首先在 Handler 处理任务的线程需要调用 Looper#prepare() 方法,来为当前线程创建一个 Looper 实例,这个实例通过 ThreadLocal 存放,也就是一个线程只能有一个这个实例;Looper 构造函数中会初始化一个 MessageQueue 对象,MessageQueue 对象就是用来封装任务的队列,它是用的链表实现,而任务队列的 Item 就是 Message 对象,也就是单个的任务;任务处理线程调用 Looper#prepare() 方法完成后,会调用 Looper#loop() 方法,这个时候任务线程就会阻塞去处理对应 Looper 中的 MessageQueue 中的任务,处理的方式就是一个死循环从 MessageQueue 中去获取最新的 Message 获取到后,然后调用对应的 Handler#handleMessage() 方法去执行它,执行完成后又去获取下一个任务,如果没有新的任务就会陷入阻塞,等有新的任务来的时候会唤醒这个阻塞(这个唤醒机制是用的 Linux 中的 epoll 机制),继续执行新的任务。

上面大致描述了 LooperMessageQueue 如何从队列中获取新的任务和执行任务,这里再简单描述下怎么插入任务,首先要自定一个 Handler 对象,构造函数中需要传入上面所创建的 Looper 对象,其中自定义的 Handler#handleMessage 方法就是用来执行任务的方法,其他的线程需要向对应的 Looper 线程添加任务时,就调用上面 Handler 实例的 sendMessage 方法来添加任务,也就是向 MessageQueue 队列中添加任务,最终会在 Looper 所对应的线程执行,这样就完成了一次跨线程的通信。
下面是一个简单的 Handler 使用的代码:


override fun onCreate(savedInstanceState: Bundle?) {super.onCreate(savedInstanceState)setContentView(R.layout.activity_main)var handlerLooper: Looper? = nullval handlerThread = object : Thread() {override fun run() {super.run()Looper.prepare()handlerLooper = Looper.myLooper()Looper.loop()}}handlerThread.start()while (handlerLooper == null) {// 等待 HandlerThread 初始化完成}val handler = object : Handler(handlerLooper!!) {override fun handleMessage(msg: Message) {super.handleMessage(msg)if (msg.what == 0) {// TODO: 处理任务,该方法最终工作在 HandlerThread 线程}}}val msg = handler.obtainMessage(0)// 发送的代码工作在主线程handler.sendMessage(msg)
}

Android 中有现成的 HandlerThread,不用自定义,我这里是为了展示这个过程。

Tips: 我后续的源码分析都是基于 andorid 31

Looper

Looper 初始化

// ...
public static void prepare() {prepare(true);
}private static void prepare(boolean quitAllowed) {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(quitAllowed));
}
// ...

// ...
private Looper(boolean quitAllowed) {mQueue = new MessageQueue(quitAllowed);mThread = Thread.currentThread();
}
// ...

初始化的过程非常简单,如果当前线程已经有 Looper 对象就直接报错,如果没有新建一个 Looper 对象放在 ThreadLocal 中,在 Looper 的构造函数中,创建了 MessageQueue 实例和保存了当前的 Thread 对象。

Looper 任务处理

// ...
public static void loop() {final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}if (me.mInLoop) {Slog.w(TAG, "Loop again would have the queued messages be executed"+ " before this one completed.");}me.mInLoop = true;// ..me.mSlowDeliveryDetected = false;for (;;) {if (!loopOnce(me, ident, thresholdOverride)) {return;}}
}
// ...

Looper#loop() 方法也非常简单,修改了当前的 Looper 的一些状态,然后在死循环中无限调用 loopOnce() 方法去执行任务,如果该方法返回 false 就表示该 Looper 已经退出,就跳出循环。


private static boolean loopOnce(final Looper me,final long ident, final int thresholdOverride) {Message msg = me.mQueue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return false;}// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " "+ msg.callback + ": " + msg.what);}// ...Object token = null;if (observer != null) {token = observer.messageDispatchStarting();}long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);try {msg.target.dispatchMessage(msg);if (observer != null) {observer.messageDispatched(token, msg);}dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} catch (Exception exception) {if (observer != null) {observer.dispatchingThrewException(token, msg, exception);}throw exception;} finally {ThreadLocalWorkSource.restore(origWorkSource);if (traceTag != 0) {Trace.traceEnd(traceTag);}}if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}// ...msg.recycleUnchecked();return true;
}

直接调用 MessageQueue#next() 方法去获取 Message 对象,如果返回空就表示 Looper 已经退出了。这里有一个 Printer 对象,在 Message 执行前后都会打印对应的日志,可以通过调用 Looper#setMessageLogging() 方法来自定义这个对象,根据打印的日志内容我们就可以分辨是开始前还是开始后,在 APM 中经常通过这个方法来判断主线程的任务执行是否超时。执行任务会调用的是 handler.target#dispatchMessage() 方法,其实这个 target 对象就是 Handler,后续再分析这个方法。
这次看代码还有新发现,这里还多了一个 Observer 对象,我记得以前的旧版本是没有的,可以通过 Looper#setObserver() 方法来设置,它的接口如下:


public interface Observer {/*** Called right before a message is dispatched.** <p> The token type is not specified to allow the implementation to specify its own type.** @return a token used for collecting telemetry when dispatching a single message.*         The token token must be passed back exactly once to either*         {@link Observer#messageDispatched} or {@link Observer#dispatchingThrewException}*         and must not be reused again.**/Object messageDispatchStarting();/*** Called when a message was processed by a Handler.** @param token Token obtained by previously calling*              {@link Observer#messageDispatchStarting} on the same Observer instance.* @param msg The message that was dispatched.*/void messageDispatched(Object token, Message msg);/*** Called when an exception was thrown while processing a message.** @param token Token obtained by previously calling*              {@link Observer#messageDispatchStarting} on the same Observer instance.* @param msg The message that was dispatched and caused an exception.* @param exception The exception that was thrown.*/void dispatchingThrewException(Object token, Message msg, Exception exception);
}

Observer 可以监听任务开始,结束和异常,看上去它可以替换 Printer,不过它是对应用层隐藏的,需要骚操作。

Handler

Handler 初始化


public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {mLooper = looper;mQueue = looper.mQueue;mCallback = callback;mAsynchronous = async;
}

其中 LooperMessageQueue 就不用多说了;其中 mCallback 对象就是可以优先于 Handler#handleMessage 方法处理任务,也可以拦截任务不让 Handler#handleMessage 执行;async 是表示发送的消息是否是异步消息,这个和消息屏障关系密切,后续会再分析。

Handler 发送消息

private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,long uptimeMillis) {msg.target = this;msg.workSourceUid = ThreadLocalWorkSource.getUid();if (mAsynchronous) {msg.setAsynchronous(true);}return queue.enqueueMessage(msg, uptimeMillis);
}

无论是调用 Handler 的哪个方法发送消息,最终都会到 enqueueMessage() 方法里面去,在 Looper 中我们说到 target 就是 Handler 对象,在这里就得到验证了,如果 Handler 的构造函数中设置为异步,Message 也会被设置为异步,然后直接将处理好的 Message 通过 MessageQueue#enqueueMessage() 方法添加到队列中。

Handler 处理消息

Looper 下发消息时说到最后会调用 HandlerdispatchMessage() 方法:


public void dispatchMessage(@NonNull Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}
}

如果 Message 中有设置 Callback 就直接在对应的 Callback 中处理,不继续下发; 如果 Message 中没有设置 Callback,会先检查 Handler 是否有设置 mCallback,如果有设置,调用 mCallback 处理,mCallbackhandleMessage 返回 true 就表示要拦截该消息,如果不拦截就交由 HandlerhandleMessage() 方法处理。

MessageQueue

MessageQueue 插入任务

在讲 Handler 的时候说到插入消息会直接调用 MessageQueue#enqueueMessage() 方法:


boolean enqueueMessage(Message msg, long when) {if (msg.target == null) {throw new IllegalArgumentException("Message must have a target.");}synchronized (this) {if (msg.isInUse()) {throw new IllegalStateException(msg + " This message is already in use.");}if (mQuitting) {IllegalStateException e = new IllegalStateException(msg.target + " sending message to a Handler on a dead thread");Log.w(TAG, e.getMessage(), e);msg.recycle();return false;}msg.markInUse();msg.when = when;Message p = mMessages;boolean needWake;if (p == null || when == 0 || when < p.when) {// New head, wake up the event queue if blocked.msg.next = p;mMessages = msg;needWake = mBlocked;} else {// Inserted within the middle of the queue.  Usually we don't have to wake// up the event queue unless there is a barrier at the head of the queue// and the message is the earliest asynchronous message in the queue.needWake = mBlocked && p.target == null && msg.isAsynchronous();Message prev;for (;;) {prev = p;p = p.next;if (p == null || when < p.when) {break;}if (needWake && p.isAsynchronous()) {needWake = false;}}msg.next = p; // invariant: p == prev.nextprev.next = msg;}// We can assume mPtr != 0 because mQuitting is false.if (needWake) {nativeWake(mPtr);}}return true;
}

如果 Message 没有设置 Handler 直接抛出异常;如果 Message 已经是 inUse 状态,直接抛出异常;如果 MessageQueue 已经退出,就直接回收 Message;按照任务的触发时间由小到大,插入到 mMessage 链表中,最后如果需要唤醒 next() 方法中的 nativePollOnce() 方法,就会调用 nativeWake 方法,这是一个 C++ 实现的方法(内部实现其实是向一个管道 fd 中写入了一个数字 1,通过 epoll 机制,会监听到管道 fd 有数据写入,然后会唤醒 nativePollOnce() 方法,然后去读取新的 Message)。

MessageQueue 读取任务

在讲 Looper 时讲到最后获取任务是通过 MessageQueue#next() 方法:


Message next() {// Return here if the message loop has already quit and been disposed.// This can happen if the application tries to restart a looper after quit// which is not supported.final long ptr = mPtr;if (ptr == 0) {return null;}int pendingIdleHandlerCount = -1; // -1 only during first iterationint nextPollTimeoutMillis = 0;for (;;) {if (nextPollTimeoutMillis != 0) {Binder.flushPendingCommands();}// 等待 epoll 唤醒,唤醒是等待 nativeWake() 方法调用或者超时(超时时间为 nextPollTimeoutMillis)nativePollOnce(ptr, nextPollTimeoutMillis);synchronized (this) {// Try to retrieve the next message.  Return if found.final long now = SystemClock.uptimeMillis();Message prevMsg = null;Message msg = mMessages;// target 为空,就表示这是一个屏障的消息if (msg != null && msg.target == null) {// Stalled by a barrier.  Find the next asynchronous message in the queue.// 找到屏障消息后的第一个异步消息do {prevMsg = msg;msg = msg.next;} while (msg != null && !msg.isAsynchronous());}if (msg != null) {if (now < msg.when) {// Next message is not ready.  Set a timeout to wake up when it is ready.// 当前消息的时间大于当前的时间,表示还没有到达执行的时间,计算间隔,等待重新进入 nativePollOnce 方法nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);} else {// 获取消息成功,把它从队列中移除,然后返回方法// Got a message.mBlocked = false;if (prevMsg != null) {prevMsg.next = msg.next;} else {mMessages = msg.next;}msg.next = null;if (DEBUG) Log.v(TAG, "Returning message: " + msg);msg.markInUse();return msg;}} else {// No more messages.nextPollTimeoutMillis = -1;}// Process the quit message now that all pending messages have been handled.if (mQuitting) {dispose();return null;}// 后续就是在没有消息时回调 IdleHandler// If first time idle, then get the number of idlers to run.// Idle handles only run if the queue is empty or if the first message// in the queue (possibly a barrier) is due to be handled in the future.// 如果 pendingIdleHandlerCount 小于 0 就表示当前的这一次 next() 方法调用,还没有执行过 IdleHandler,就需要去读取 IdleHandler 的数量,在一次 next() 方法调用时最多执行一次 IdleHandler。if (pendingIdleHandlerCount < 0&& (mMessages == null || now < mMessages.when)) {pendingIdleHandlerCount = mIdleHandlers.size();}if (pendingIdleHandlerCount <= 0) {// 这里就表示 IdleHandler 为空,或者已经执行过了。// No idle handlers to run.  Loop and wait some more.mBlocked = true;continue;}if (mPendingIdleHandlers == null) {mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];}mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);}// Run the idle handlers.// We only ever reach this code block during the first iteration.for (int i = 0; i < pendingIdleHandlerCount; i++) {final IdleHandler idler = mPendingIdleHandlers[i];mPendingIdleHandlers[i] = null; // release the reference to the handlerboolean keep = false;try {// 执行 idleHandlerkeep = idler.queueIdle();} catch (Throwable t) {Log.wtf(TAG, "IdleHandler threw exception", t);}// 如果不需要保留就把它移出if (!keep) {synchronized (this) {mIdleHandlers.remove(idler);}}}// Reset the idle handler count to 0 so we do not run them again.// 这里设置为 0 后,IdleHandler 就不会再次执行,需要等待下次的 next() 方法调用pendingIdleHandlerCount = 0;// While calling an idle handler, a new message could have been delivered// so go back and look again for a pending message without waiting.nextPollTimeoutMillis = 0;}
}

通过 nativePollOnce() 方法等待唤醒(通过调用 nativeWake() 方法)或者超时(超时时间是 nextPollTimeoutMillis),唤醒后直接获取最新的一条 Message(先跳过同步消息逻辑),然后判断任务执行的时间,如果大于当前时间就继续等待,直到可以执行,如果小于当前时间直接返回,同时把这条消息从队列中移除(先跳过 IdleHandler 逻辑)。

同步消息和消息屏障

如果 target 对象为空就表示该消息是一个同步屏障,如果是同步屏障的话他就会重新再去取该同步屏障消息后面的最新一个异步消息去执行,如果没有异步消息就会去等待。
通过以下方法添加屏障消息:


private int postSyncBarrier(long when) {// Enqueue a new sync barrier token.// We don't need to wake the queue because the purpose of a barrier is to stall it.synchronized (this) {final int token = mNextBarrierToken++;final Message msg = Message.obtain();msg.markInUse();msg.when = when;msg.arg1 = token;Message prev = null;Message p = mMessages;if (when != 0) {while (p != null && p.when <= when) {prev = p;p = p.next;}}if (prev != null) { // invariant: p == prev.nextmsg.next = p;prev.next = msg;} else {msg.next = p;mMessages = msg;}return token;}
}

其实就是在消息队列中添加了一个 target 为空的消息,同时在 Messagearg1 对象中添加 token 对象,然后这个 token 也会返回给调用方,这个 token 在移除屏障时需要用到。

通过以下方法可以移除这个消息屏障:


public void removeSyncBarrier(int token) {// Remove a sync barrier token from the queue.// If the queue is no longer stalled by a barrier then wake it.synchronized (this) {Message prev = null;Message p = mMessages;while (p != null && (p.target != null || p.arg1 != token)) {prev = p;p = p.next;}if (p == null) {throw new IllegalStateException("The specified message queue synchronization "+ " barrier token has not been posted or has already been removed.");}final boolean needWake;if (prev != null) {prev.next = p.next;needWake = false;} else {mMessages = p.next;needWake = mMessages == null || mMessages.target != null;}p.recycleUnchecked();// If the loop is quitting then it is already awake.// We can assume mPtr != 0 when mQuitting is false.if (needWake && !mQuitting) {nativeWake(mPtr);}}
}

我之前在 [Framework] Android Choreographer 工作原理有简单介绍过,在绘制的时候就会用到同步消息和消息屏障来提高绘制相关的 Message 的优先级。

请求绘制最终会到 ViewRootImpl#scheduleTraversals() 方法中,在这个方法中就会添加一个屏障:


void scheduleTraversals() {if (!mTraversalScheduled) {mTraversalScheduled = true;mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);notifyRendererOfFramePending();pokeDrawLockIfNeeded();}
}

Choregorapher 收到 Vsync 信号后会发送一个 Handler 的异步 Message:


public void onVsync(long timestampNanos, long physicalDisplayId, int frame,VsyncEventData vsyncEventData) {// ..Message msg = Message.obtain(mHandler, this);msg.setAsynchronous(true);mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);// ..
}

在绘制完成后会调用 ViewRootImpl#unscheduleTraversals() 方法移除这个屏障:

void unscheduleTraversals() {if (mTraversalScheduled) {mTraversalScheduled = false;mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);mChoreographer.removeCallbacks(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);}}
IdleHandler

IdleHandler 就是在 next() 方法获取不到消息时会执行一次,next() 方法调用一次最多只能执行一次 IdleHandler,执行 IdleHandler 的时候就表示当前的 Looper 比较空闲,IdleHandler 的数量最多为 4 个 (在 ActivityonDestroy() 回调就是在 IdleHandler 中执行的,可能写这部分代码的人,认为 onDestroy() 相对其他的生命周期没有那么重要,但是由于 IdleHandler 的特性也会引发一些问题,后续有时间会分析这个问题) 。
可以通过以下方法添加 IdleHandler

    public void addIdleHandler(@NonNull IdleHandler handler) {if (handler == null) {throw new NullPointerException("Can't add a null IdleHandler");}synchronized (this) {mIdleHandlers.add(handler);}}

epoll 在 Handler 中的工作方式

MessageQueue 的构造函数中会通过 Native 方法 nativeInit() 初始化 epoll,初始化流程会先通过 epoll_create() 方法创建一个 EpollFd,然后构建一个管道的 fd 用于 epoll 来监听它的读写状态,这个 fd 被命名为 WakeFd,然后通过 epoll_ctl() 方法将 WakeFd 添加到 EpollFd 中,以供后续通过 EpollFd 能够监听 WakeFd 的状态。
MessageQueuenext() 方法中会通过 Native 方法 nativePollOnce() 方法去监听上面所提到 WakeFd 的状态,Native 层是通过 epoll_wait() 方法去监听状态,这个方法会等到超时或者 WakeFd 有数据写入就会返回。
MessageQueueenqueueMessage() 方法中插入 Message 后,会判断是否需要唤醒 next() 中的 nativePollOnce() 方法,如果需要唤醒就会调用 Native 方法 nativeWake() 方法,Native 层就会向 WakeFd 中写入一个数字 1,然后 nativePollOnce() 间听到这个 WakeFd 写状态后就会返回,也就解除 next() 方法的阻塞去读取新的 Message

最后聊一聊主线程

在 Android Framework 中有两个主要的主线程 Handler,一个是 ActivityThread 中的 H,它主要来处理四大组建的各种生命周期;还有一个是 Choreographer 中的 FrameHandler,它主要负责绘制,动画,输入等操作。这两个 Handler 负责的工作和用户体验都极为密切,主线程也可以说非常忙。

在项目中我经常发现很多的代码都会在主线程执行,明明有的操作不需要主线程执行。比如说在一个网络请求的通用方法中,在网络完成的回调中就会主动切换到主线程,明明很多地方的代码不需要用到主线程,我个人的观点是一定需要切换主线程时再切换,在一定程度上能够缓解应用卡顿的问题。

Android 学习笔录

Android 性能优化篇:https://qr18.cn/FVlo89
Android Framework底层原理篇:https://qr18.cn/AQpN4J
Android 车载篇:https://qr18.cn/F05ZCM
Android 逆向安全学习笔记:https://qr18.cn/CQ5TcL
Android 音视频篇:https://qr18.cn/Ei3VPD
Jetpack全家桶篇(内含Compose):https://qr18.cn/A0gajp
OkHttp 源码解析笔记:https://qr18.cn/Cw0pBD
Kotlin 篇:https://qr18.cn/CdjtAF
Gradle 篇:https://qr18.cn/DzrmMB
Flutter 篇:https://qr18.cn/DIvKma
Android 八大知识体:https://qr18.cn/CyxarU
Android 核心笔记:https://qr21.cn/CaZQLo
Android 往年面试题锦:https://qr18.cn/CKV8OZ
2023年最新Android 面试题集:https://qr18.cn/CgxrRy
Android 车载开发岗位面试习题:https://qr18.cn/FTlyCJ
音视频面试题锦:https://qr18.cn/AcV6Ap

相关文章:

[Framework] Android Handler 工作原理

Android 中的 Handler 都被人说烂了&#xff0c;但是还是想多说一次&#xff0c;因为在 Android 的系统中它真的非常重要而且它的机制并没有很复杂&#xff0c;无论是新手和老手都可以好好学习下&#xff0c;这对理解 Android 系统很重要&#xff0c;所以说学习的性价比非常高。…...

KITTI数据集中的二进制激光雷达数据(.bin文件)转换为点云数据(.pcd文件)(C++代码)

目录 main.cpp CMakeLists.txt main.cpp #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <fstream> #include <iostream> #include <vector>int main() {// Define file pathsstd::string input_filename "/home/f…...

全球AI人工智能领袖:Anthropic联合创始人丹妮拉·阿莫迪!

在创业界中&#xff0c;有许多杰出的女性企业家&#xff0c;而丹妮拉阿莫迪则是其中的佼佼者。作为Anthropic联合创始人&#xff0c;丹妮拉以她的智慧、勇气和远见闻名于世。 她的故事既是启迪&#xff0c;又是励志&#xff0c;让我们一起来看看她的独特之处。 丹妮拉阿莫迪毕…...

CoT 的方式使用 LLM 设计测试用例实践

前期准备 import SparkApi import os from dotenv import load_dotenv, find_dotenv#以下密钥信息从控制台获取_=load_dotenv(find_dotenv()) appid = os.getenv("SPARK_APP_ID") api_secret=os.getenv("SPARK_APP_SECRET") api_key=os.getenv("SPAR…...

神秘的锦衣卫

在看明朝电视剧经常听到的一句台词&#xff1a;锦衣卫办案&#xff0c;闲杂人等速速离开。锦衣卫是明朝特务机构&#xff0c;直接听命于皇帝&#xff0c;是亲军卫之一&#xff0c;也是最重要的一卫。 1、卫所制 卫所制是明代最主要的军事制度&#xff0c;其目标是寓兵于农、屯…...

Springboot中使用Redis

Redis 是一个基于内存的key-value的结构数据库适合存储热点数据 Macos安装Redis https://redis.io/docs/getting-started/installation/install-redis-on-mac-os/安装redis brew install redis查看安装信息&#xff1a; brew info redis前台启动redis: redis-server后台启…...

超声波波形生成电路设计

摘要 随着我国微型电子技术和嵌入式系统的发展&#xff0c;目前行业内相对比较传统的超声波技术无法满足客户的需求。为了改进传统超声波技术在被测设备上的短板问题&#xff0c;在本次毕业设计中&#xff0c;将使用相对先进、快捷、智能的控制机制。该超声波生成控制系统的控制…...

C#和JS交互之Microsoft.ClearScript.V8(V8引擎)

之前测试了很多JS引擎&#xff0c;都只支持es5语法&#xff0c;不支持执行es6&#xff0c;测试了下微软的V8反正能跑通&#xff0c;应该是支持的。还得是微软呀。 如图&#xff1a;安装相关包&#xff1a; 这是参考的官方V8代码 using Microsoft.ClearScript.JavaScript; us…...

9月活动回顾(免费领取PPT)|火山引擎DataLeap、ByteHouse多位专家带来DataOps、实时计算等前沿技术分享!

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 在上月举行的火山引擎开发者社区 Meetup 第12期暨超话数据专场《数智化转型背景下的火山引擎大数据技术揭秘》上&#xff0c;来自火山引擎DataLeap、EMR、DataSail、…...

salesforce的按钮执行js代码如何链接到apex代码

在Salesforce中&#xff0c;你可以通过自定义JavaScript按钮或链接来触发Apex代码的执行。这可以通过使用JavaScript Remoting或Visualforce页面来实现。以下是一些步骤来将JavaScript按钮与Apex代码链接起来&#xff1a; 使用JavaScript Remoting链接JavaScript按钮到Apex代码…...

C语言 —— 操作符

1. 操作符的分类 算术操作符: - * / % 移位操作符: << >> 位操作符: & | ^ 赋值操作符: - 单目操作符 关系操作符 逻辑操作符 条件操作符 逗号表达式 下标引用、函数调用和结构成员 2. 算术操作符 - * / % 注意 /操作符: 对于整型的除法运算结果依然是整数…...

物联网AI MicroPython传感器学习 之 CCS811空气质量检测传感器

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; 一、产品简介 通过CCS811传感器模块可以测量环境中TVOC(总挥发性有机物质)浓度和eCO2(二氧化碳)浓度&#xff0c;作为衡量空气质量&#xff08;IAQ&#xff09;的指标。 引脚定义 VCC&#xff1a;3.3VGND&…...

TCP/IP(十五)拥塞控制

一 拥塞控制 ① 拥塞控制必要性 思考&#xff1a; 为什么要有拥塞控制呀,不是有流量控制了吗&#xff1f; ② 拥赛窗口 cwnd 什么是拥塞窗口? 和发送窗口有什么关系呢?明白&#xff1a; cwnd、swnd、rwnd 缩写 含义 ③ 如何知道当前网络是否出现了拥塞呢&#xff1f;…...

vue3 404解决方法

在 Vue 3 应用中解决 404 错误通常涉及到 Vue Router&#xff0c;因为 404 错误通常与路由无法匹配到的路径有关. 1. **检查路由配置**&#xff1a;首先确保你的路由配置正确。确保每个路由路径都与你的组件正确匹配&#xff0c;并且在需要时添加必要的路由守卫。 2. **通配符…...

Unity中使用Xlua调用lua相关

//引用命名空间 using XLua; public class L1 : MonoBehaviour {// Start is called before the first frame updatevoid Start(){//Lua解析器 让我们在Unity中使用luaLuaEnv env new LuaEnv();//执行env.DoString("print(OK)");//执行一个Lua脚本 在resource文件夹…...

基于http的protobuf服务实现

本文介绍在http协议中&#xff0c;使用protobuf格式进行二进制数据通信。双方需设置http的header中ContentType为application/x-protobuf。 1、springboot下实现protobuf&#xff1a; 1&#xff09;pom.xml <dependency><groupId>org.springframework.boot</g…...

基于uniapp的商城外卖小程序

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

【CSS】Tailwind CSS

直接参考 Tailwind CSS 安装提供了四种方式。因为我常用构建工具搭建项目&#xff0c;所以选择 Using PostCSS 。 其中 tailwind.config.js 的配置可以改为&#xff1a; module.exports {content: [./index.html, ./src/**/*.{vue,js,ts,jsx,tsx}],theme: {extend: {},},pl…...

leetcode-电话号码组合(C CODE)

1. 题目 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 1&#xff1a; 输入&#xff1a;digits “23” 输出&#…...

Leetcode92. 反转链表 II

Every day a Leetcode 题目来源&#xff1a;92. 反转链表 II 解法1&#xff1a;模拟 注意 STL 的 reverse() 是左闭右开的。 代码&#xff1a; class Solution { public:ListNode *reverseBetween(ListNode *head, int left, int right){vector<int> nums getNums(…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...