当前位置: 首页 > news >正文

Flink学习笔记(二):Flink内存模型

文章目录

  • 1、配置总内存
  • 2、JobManager 内存模型
  • 3、TaskManager 内存模型
  • 4、WebUI 展示内存
  • 5、Flink On YARN 模式下内存分配
  • 6、Flink On Yarn 集群消耗资源估算
    • 6.1、资源分配
    • 6.2、Flink 提交 Yarn 集群的相关命令
    • 6.3、Flink On Yarn 集群的资源计算公式

1、配置总内存

Flink JVM 进程的进程总内存(Total Process Memory)包含了由 Flink 应用使用的内存(Flink 总内存)以及由运行 Flink 的 JVM 使用的内存。 Flink 总内存(Total Flink Memory)包括 JVM 堆内存(Heap Memory)和堆外内存(Off-Heap Memory)。 其中堆外内存包括直接内存(Direct Memory)和本地内存(Native Memory)。详细的配置参数:https://nightlies.apache.org/flink/flink-docs-release-1.12/zh/deployment/config.html

配置 Flink 进程内存最简单的方法是指定以下两个配置项中的任意一个:

配置项TaskManager 配置参数JobManager 配置参数
Flink 总内存taskmanager.memory.flink.sizejobmanager.memory.flink.size
进程总内存taskmanager.memory.process.sizejobmanager.memory.process.size

Flink 启动需要明确配置:

TaskManagerJobManager
taskmanager.memory.flink.sizejobmanager.memory.flink.size
taskmanager.memory.process.sizejobmanager.memory.process.size
taskmanager.memory.task.heap.size 和 taskmanager.memory.managed.sizejobmanager.memory.heap.size

不建议同时设置进程总内存和 Flink 总内存。 这可能会造成内存配置冲突,从而导致部署失败。 额外配置其他内存部分时,同样需要注意可能产生的配置冲突。
JVM参数

2、JobManager 内存模型

JobManager内存模型
如上图所示,下表中列出了 Flink JobManager 内存模型的所有组成部分,以及影响其大小的相关配置参数。

组成部分配置参数描述
JVM 堆内存jobmanager.memory.heap.sizeJobManager 的 JVM 堆内存。
堆外内存jobmanager.memory.off-heap.sizeJobManager 的堆外内存(直接内存或本地内存)。
JVM Metaspacejobmanager.memory.jvm-metaspace.sizeFlink JVM 进程的 Metaspace。
JVM 开销jobmanager.memory.jvm-overhead.min、jobmanager.memory.jvm-overhead.max、jobmanager.memory.jvm-overhead.fraction用于其他 JVM 开销的本地内存,例如栈空间、垃圾回收空间等。该内存部分为基于进程总内存的受限的等比内存部分。

如配置总内存中所述,另一种配置 JobManager 内存的方式是明确指定 JVM 堆内存的大小(jobmanager.memory.heap.size)。 通过这种方式,用户可以更好地掌控用于以下用途的 JVM 堆内存大小。

3、TaskManager 内存模型

内存模型详解
如上图所示,下表中列出了 Flink TaskManager 内存模型的所有组成部分,以及影响其大小的相关配置参数。

组成部分配置参数描述
框架堆内存(Framework Heap Memory)taskmanager.memory.framework.heap.size用于 Flink 框架的 JVM 堆内存(进阶配置)。
任务堆内存(Task Heap Memory)taskmanager.memory.task.heap.size用于 Flink 应用的算子及用户代码的 JVM 堆内存。
托管内存(Managed memory)taskmanager.memory.managed.size、taskmanager.memory.managed.fraction由 Flink 管理的用于排序、哈希表、缓存中间结果及 RocksDB State Backend 的本地内存。
框架堆外内存(Framework Off-heap Memory)taskmanager.memory.framework.off-heap.size用于 Flink 框架的堆外内存(直接内存或本地内存)(进阶配置)。
任务堆外内存(Task Off-heap Memory)taskmanager.memory.task.off-heap.size用于 Flink 应用的算子及用户代码的堆外内存(直接内存或本地内存)。
网络内存(Network Memory)taskmanager.memory.network.min、taskmanager.memory.network.max、taskmanager.memory.network.fraction用于任务之间数据传输的直接内存(例如网络传输缓冲)。该内存部分为基于 Flink 总内存的受限的等比内存部分。
JVM Metaspacetaskmanager.memory.jvm-metaspace.sizeFlink JVM 进程的 Metaspace。
JVM 开销taskmanager.memory.jvm-overhead.min、taskmanager.memory.jvm-overhead.max、taskmanager.memory.jvm-overhead.fraction用于其他 JVM 开销的本地内存,例如栈空间、垃圾回收空间等。该内存部分为基于进程总内存的受限的等比内存部分。

我们可以看到,有些内存部分的大小可以直接通过一个配置参数进行设置,有些则需要根据多个参数进行调整。通常情况下,不建议对框架堆内存和框架堆外内存进行调整。 除非你非常肯定 Flink 的内部数据结构及操作需要更多的内存。 这可能与具体的部署环境及作业结构有关,例如非常高的并发度。 此外,Flink 的部分依赖(例如 Hadoop)在某些特定的情况下也可能会需要更多的直接内存或本地内存。

4、WebUI 展示内存

JobManager 内存直观展示
Job
TaskManager 内存直观展示
task
树状图表示:
树状图

5、Flink On YARN 模式下内存分配

如果是 Flink On YARN 模式下:

taskmanager.memory.process.size = 4096 MB = 4G
taskmanager.memory.network.fraction = 0.15
taskmanager.memory.managed.fraction = 0.45

然后根据以上参数,就可以计算得到各部分的内存大小:

taskmanager.memory.jvm-overhead = 4096 * 0.1 = 409.6 MB
taskmanager.memory.flink.size = 4096 - 409.6 - 256 = 3430.4 MB
taskmanager.memory.network = 3430.4 * 0.15 = 514.56 MB
taskmanager.memory.managed = 3430.4 * 0.45 = 1543.68 MB
taskmanager.memory.task.heap.size = 3430.4 - 128 * 2 - 1543.68 - 514.56 = 1116.16 MB

实际案例

6、Flink On Yarn 集群消耗资源估算

6.1、资源分配

  • 每一个 Flink Application 都包含 至少一个 JobManager (若 HA 配置则可包含多个 JobManagers)。若有多个 JobManagers ,则 有且仅有一个 JobManager 处于 Running 状态,其他的 JobManager 则处于 Standby 状态;
  • 每一个处于 Running 状态的 JobManager 管理着 一个或多个 TaskManager。TaskManager 的本质是一个 JVM 进程,可以执行一个或多个线程。TaskManager 可以用于对 Memory 进行隔离;
  • 每一个 TaskManager 可以执行 一个或多个 Slot。Slot 的本质是由 JVM 进程所生成的线程。每个 Slot 可以将 TaskManager 管理的的 Total Memory 进行平均分配,但不会对 CPU 进行隔离。在同一个 TaskManager 中的 Slots 共享 TCP 连接 (through multiplexing) 、心跳信息、数据集和数据结构;
  • 每一个 Slot 内部可以执行 零个或一个 Pipeline。 每一个 Pipeline 中又可以包含 任意数量的 有前后关联关系的 Tasks。注意一个 Flink Cluster 所能达到的最大并行度数量等于所有 TaskManager 中全部 Slot 的数量的总和

6.2、Flink 提交 Yarn 集群的相关命令

在使用 Yarn 作为集群资源管理器时,时常会使用如下命令对 Flink Application 进行提交,主要参数如下:

flink run -m yarn-cluster -ys 2 -p 1 -yjm 1G -ytm 2G
参数解释说明
-yjm,–yarnjobManagerMemoryMemory for JobManager Container with optional unit (default: MB)JobManager 内存容量 (在一个 Flink Application 中处于 Running 状态的 JobManager 只有一个)
-ytm,–yarntaskManagerMemoryMemory per TaskManager Container with optional unit (default: MB)每一个 TaskManager 的内存容量
-ys,–yarnslotsNumber of slots per TaskManager每一个 TaskManager 中的 Slot 数量
-p,–parallelismThe parallelism with which to run the program. Optional flag to override the default value specified in the configuration.任务执行的并行度

该命令的各个参数表示的含义如下 (使用 flink --help 命令即可阅读)。

Flink 启动参考配置参数(带有 kerberos 认证可根据实际情况需要删减):

/home/dev/soft/flink/bin/flink run \-m yarn-cluster \-yD akka.ask.timeout='360 s' \-yD akka.framesize=20485760b \-yD blob.fetch.backlog=1000 \-yD blob.fetch.num-concurrent=500 \-yD blob.fetch.retries=50 \-yD blob.storage.directory=/data1/flinkdir \-yD env.java.opts.jobmanager='-XX:ErrorFile=/tmp/java_error_%p.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=512m -XX:+UseG1GC -XX:MaxGCPauseMillis=300 -XX:InitiatingHeapOccupancyPercent=50 -XX:+ExplicitGCInvokesConcurrent -XX:+AlwaysPreTouch -XX:AutoBoxCacheMax=20000 -XX:G1HeapWastePercent=5 -XX:G1ReservePercent=25 -Dfile.encoding=UTF-8' \-yD env.java.opts.taskmanager='-XX:ErrorFile=/tmp/java_error_%p.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=1024m -XX:+UseG1GC -XX:MaxGCPauseMillis=300 -XX:InitiatingHeapOccupancyPercent=50 -XX:+ExplicitGCInvokesConcurrent -XX:+AlwaysPreTouch -XX:AutoBoxCacheMax=20000 -Dsun.security.krb5.debug=false -Dfile.encoding=UTF-8' \-yD env.java.opts='-XX:ErrorFile=/tmp/java_error_%p.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=1024m -Dfile.encoding=UTF-8' \-yD execution.attached=false \-yD execution.buffer-timeout='1000 ms' \-yD execution.checkpointing.externalized-checkpoint-retention=RETAIN_ON_CANCELLATION \-yD execution.checkpointing.interval='30 min' \-yD execution.checkpointing.max-concurrent-checkpoints=1 \-yD execution.checkpointing.min-pause='2 min' \-yD execution.checkpointing.mode=EXACTLY_ONCE \-yD execution.checkpointing.timeout='28 min' \-yD execution.checkpointing.tolerable-failed-checkpoints=8 \-yD execution.checkpointing.unaligned=true \-yD execution.checkpointing.unaligned.forced=true \-yD heartbeat.interval=60000 \-yD heartbeat.rpc-failure-threshold=5 \-yD heartbeat.timeout=340000 \-yD io.tmp.dirs=/data1/flinkdir \-yD jobmanager.heap.size=1024m \-yD jobmanager.memory.jvm-metaspace.size=268435456b \-yD jobmanager.memory.jvm-overhead.max=1073741824b \-yD jobmanager.memory.jvm-overhead.min=1073741824b \-yD jobmanager.memory.network.fraction=0.2 \-yD jobmanager.memory.network.max=6GB \-yD jobmanager.memory.off-heap.size=134217728b \-yD jobmanager.memory.process.size='18360 mb' \-yD metrics.reporter.promgateway.deleteOnShutdown=true \-yD metrics.reporter.promgateway.factory.class=org.apache.flink.metrics.prometheus.PrometheusPushGatewayReporterFactory \-yD metrics.reporter.promgateway.filter.includes=\*:dqc\*,uptime,taskSlotsTotal,numRegisteredTaskManagers,taskSlotsAvailable,numberOfFailedCheckpoints,numRestarts,lastCheckpointDuration,Used,Max,Total,Count,Time:gauge,meter,counter,histogram \-yD metrics.reporter.promgateway.groupingKey="yarn=${yarn};hdfs=${hdfs};job_name=TEST-broadcast-${jobName//./-}-${provId}" \-yD metrics.reporter.promgateway.host=172.17.xxxx.xxxx \-yD metrics.reporter.promgateway.interval='60 SECONDS' \-yD metrics.reporter.promgateway.jobName="TEST-broadcast-${jobName//./-}-${provId}" \-yD metrics.reporter.promgateway.port=10080 \-yD metrics.reporter.promgateway.randomJobNameSuffix=true \-yD pipeline.name="TEST-broadcast-${jobName//./-}-${provId}" \-yD pipeline.object-reuse=true \-yD rest.flamegraph.enabled=true \-yD rest.server.numThreads=20 \-yD restart-strategy.failure-rate.delay='60 s' \-yD restart-strategy.failure-rate.failure-rate-interval='3 min' \-yD restart-strategy.failure-rate.max-failures-per-interval=3 \-yD restart-strategy=failure-rate \-yD security.kerberos.krb5-conf.path=/home/dev/kerberos/krb5.conf \-yD security.kerberos.login.contexts=Client,KafkaClient \-yD security.kerberos.login.keytab=/home/dev/kerberos/xxxx.keytab \-yD security.kerberos.login.principal=xxxx \-yD security.kerberos.login.use-ticket-cache=false \-yD state.backend.async=true \-yD state.backend=hashmap \-yD state.checkpoints.dir=hdfs://xxxx/flink/checkpoint/${jobName//.//}/$provId \-yD state.checkpoint-storage=filesystem \-yD state.checkpoints.num-retained=3 \-yD state.savepoints.dir=hdfs://xxxx/flink/savepoint/${jobName//.//}/$provId \-yD table.exec.hive.fallback-mapred-writer=false \-yD task.manager.memory.segment-size=4mb \-yD taskmanager.memory.framework.off-heap.size=1GB \-yD taskmanager.memory.managed.fraction=0.2 \-yD taskmanager.memory.network.fraction=0.075 \-yD taskmanager.memory.network.max=16GB \-yD taskmanager.memory.process.size='50 gb' \-yD taskmanager.network.netty.client.connectTimeoutSec=600 \-yD taskmanager.network.request-backoff.max=120000 \-yD taskmanager.network.retries=100 \-yD taskmanager.numberOfTaskSlots=10 \-yD web.timeout=900000 \-yD web.upload.dir=/data1/flinkdir \-yD yarn.application.name="TEST-broadcast-${jobName//./-}-${provId}" \-yD yarn.application.queue=$yarnQueue \-yD yarn.application-attempts=10 \

6.3、Flink On Yarn 集群的资源计算公式

  • JobManager 的内存计算
    JobManager 的数量 = 1 (固定,由于一个 Flink Application 只能有一个 JobManager)
    JobManager 的内存总量 = 1 * JobManager 的内存大小 = 1 * yjm

  • TaskManager 的内存计算
    TaskManager 的数量 = (设置的并行度总数 / 每个 TaskManager 的 Slot 数量) = (p / ys) (Ps: p / ys 有可能为非整数,故需要向下取整)
    TaskManager 的内存总量 = TaskManager 的数量 * 每个 TaskManager 的内存容量 = TaskManager 的数量 * ytm

  • Slot 所占用的内存计算
    每个 Slot 的内存容量 = 每个 TaskManager 的内存容量 / 每一个 TaskManager 中的 Slot 数量 = ytm / ys
    Slot 的总数量 = 最大并行度数量 = p
    Slot 所占用的总内存容量 = TaskManager 的内存总量 = (p / ys) * ytm

  • yarn vcore 总数量计算
    yarn vcore 总数量 = Slot 的总数量 + JobManager 占用的 vcore 数量 (与 Yarn 的 minimum Allocation 有关) = p + m (不足则取 Yarn 的最小 vcore 分配数量)

  • yarn container 的总数量计算
    yarn container 的总数量 = TaskManager 的数量 + JobManager 的数量 = 1 + (p / ys) = (p / ys) + 1

yarn 的内存总量 = JobManager 的数量 * yjm (与 Yarn 的 minimum Allocation 有关) + TaskManager 的数量 * ytm = 1 * yjm (不足则取 Yarn 的最小 Memory 分配数量) + (p / ys) * ytm

Ps: 根据实际应用经验,一般 Yarn 的一个 vcore 搭配 2G 内存是最为有效率的配置方法。

实战应用:
flink-conf.yaml 配置项:

# Total size of the JobManager (JobMaster / ResourceManager / Dispatcher) process.
jobmanager.memory.process.size: 2048m
# Total size of the TaskManager process.
taskmanager.memory.process.size: 20480m
# Managed Memory size for TaskExecutors. This is the size of off-heap memory managed by the memory manager, reserved for sorting, hash tables, caching of intermediate results and RocksDB state backend. Memory consumers can either allocate memory from the memory manager in the form of MemorySegments, or reserve bytes from the memory manager and keep their memory usage within that boundary. If unspecified, it will be derived to make up the configured fraction of the Total Flink Memory.
taskmanager.memory.managed.size: 4096m
# The number of parallel operator or user function instances that a single TaskManager can run. If this value is larger than 1, a single TaskManager takes multiple instances of a function or operator. That way, the TaskManager can utilize multiple CPU cores, but at the same time, the available memory is divided between the different operator or function instances. This value is typically proportional to the number of physical CPU cores that the TaskManager's machine has (e.g., equal to the number of cores, or half the number of cores).
taskmanager.numberOfTaskSlots: 10

Yarn 集群相关配置项:

Minimum Allocation <memory:4096, vCores:2>	 
Maximum Allocation <memory:163840, vCores:96>

假设 Flink 流任务在 FlinkSQL 中设置的并行度为 10 (parallelism = 10)。根据计算公式:

JobManager 的数量 = 1
TaskManager 的数量 = (p / ys) = 1 (注:ys 配置是 taskmanager.numberOfTaskSlots = 10)
Slot 的总数量 = p = 10
yarn vcore 的总数量 = Slot 的总数量 + 1 = p + 1 = p + 2 (向上取至 Yarn 最小分配 vcore 数) = 12
yarn container 的总数量 = TaskManager 的数量 + JobManager 的数量 = 2
yarn 的内存总量 = JobManager 的数量 * yjm + TaskManager 的数量 * ytm = 1 * 2048m + 1 * 20480m = 1 * 4096m (向上取至 Yarn 最小分配内存数) + 1 * 20480m = 24576m

相关文章:

Flink学习笔记(二):Flink内存模型

文章目录 1、配置总内存2、JobManager 内存模型3、TaskManager 内存模型4、WebUI 展示内存5、Flink On YARN 模式下内存分配6、Flink On Yarn 集群消耗资源估算6.1、资源分配6.2、Flink 提交 Yarn 集群的相关命令6.3、Flink On Yarn 集群的资源计算公式 1、配置总内存 Flink J…...

信息系统项目管理师第四版学习笔记——项目绩效域

干系人绩效域 干系人绩效域涉及与干系人相关的活动和职能。在项目整个生命周期过程中&#xff0c;有效执行本绩效域可以实现的预期目标主要包含&#xff1a;①与干系人建立高效的工作关系&#xff1b;②干系人认同项目目标&#xff1b;③支持项目的干系人提高了满意度&#xf…...

PyTorch 深度学习之加载数据集Dataset and DataLoader(七)

1. Revision: Manual data feed 全部Batch&#xff1a;计算速度&#xff0c;性能有问题 1 个 &#xff1a;跨越鞍点 mini-Batch:均衡速度与性能 2. Terminology: Epoch, Batch-Size, Iteration DataLoader: batch_size2, sheffleTrue 3. How to define your Dataset 两种处…...

小谈设计模式(26)—中介者模式

小谈设计模式&#xff08;26&#xff09;—中介者模式 专栏介绍专栏地址专栏介绍 中介者模式分析角色分析抽象中介者&#xff08;Mediator&#xff09;具体中介者&#xff08;ConcreteMediator&#xff09;抽象同事类&#xff08;Colleague&#xff09;具体同事类&#xff08;C…...

7种设计模式

1. 工厂模式 优点&#xff1a;封装了对象的创建过程&#xff0c;降低了耦合性&#xff0c;提供了灵活性和可扩展性。 缺点&#xff1a;增加了代码的复杂性&#xff0c;需要创建工厂类。 适用场景&#xff1a;当需要根据不同条件创建不同对象时&#xff0c;或者需要隐藏对象创建…...

el-table合计行合并

效果如下 因为合计el-table的合并方法是不生效的,所以需要修改css下手 watch: {// 应急物资的合计合并planData: {immediate: true,handler() {setTimeout(() > {const tds document.querySelectorAll(".pro_table .el-table__footer-wrapper tr>td");tds[0]…...

新手如何快速上手HTTP爬虫IP?

对于刚接触HTTP爬虫IP的新手来说&#xff0c;可能会感到有些困惑。但是&#xff0c;实际上HTTP爬虫IP并不复杂&#xff0c;只要掌握了基本的操作步骤&#xff0c;就可以轻松使用。本文将为新手们提供一个快速上手HTTP爬虫IP的入门指南&#xff0c;帮助您迅速了解HTTP爬虫IP的基…...

(十五)VBA常用基础知识:正则表达式的使用

vba正则表达式的说明 项目说明Pattern在这里写正则表达式&#xff0c;例&#xff1a;[\d]{2,4}IgnoreCase大小写区分&#xff0c;默认false&#xff1a;区分&#xff1b;true&#xff1a;不区分Globaltrue&#xff1a;全体检索&#xff1b;false&#xff1a;最小匹配Test类似p…...

vue配置@路径

第一步&#xff1a;安装path&#xff0c;如果node_module文件夹中有path就不用安装了 安装命令&#xff1a;npm install path --save 第二步&#xff1a;在vue.config.js文件&#xff08;如果没有就新建&#xff09;中配置 const path require("path"); function …...

Ubuntu 18.04 OpenCV3.4.5 + OpenCV3.4.5 Contrib 编译

目录 1 依赖安装 2 下载opencv3.4.5及opencv3.4.5 contrib版本 3 编译opencv3.4.5 opencv3.4.5_contrib及遇到的问题 1 依赖安装 首先安装编译工具CMake&#xff0c;命令安装即可&#xff1a; sudo apt install cmake 安装Eigen&#xff1a; sudo apt-get install libeigen3-…...

【网络基础】IP 子网划分(VLSM)

目录 一、 为什么要划分子网 二、如何划分子网 1、划分两个子网 2、划分多个子网 一、 为什么要划分子网 假设有一个B类IP地址172.16.0.0&#xff0c;B类IP的默认子网掩码是 255.255.0.0&#xff0c;那么该网段内IP的变化范围为 172.16.0.0 ~ 172.16.255.255&#xff0c;即…...

【OCR】合同上批量贴印章

一、需求 OCR算法在处理合同等文件时&#xff0c;会由于印章等遮挡导致文本误识别。因此在OCR预处理时&#xff0c;有一个很重要的步骤是“去除印章”。其中本文主要聚焦在“去除印章”任务中的数据构建步骤&#xff1a;“合同伪印章”的数据构建。下面直接放几张批量合成后效果…...

Stable diffusion 用DeOldify给黑白照片、视频上色

老照片常常因为当时的技术限制而只有黑白版本。然而现代的 AI 技术,如 DeOldify,可以让这些照片重现色彩。 本教程将详细介绍如何使用 DeOldify 来给老照片上色。. 之前介绍过基于虚拟环境的 基于DeOldify的给黑白照片、视频上色,本次介绍对于新手比较友好的在Stable diff…...

在服务器上解压.7z文件

1. 更新apt sudo apt-get update2. 安装p7zip sudo apt-get install p7zip-full3. 解压.7z文件 7za x WN18RR.7z...

【opencv】windows10下opencv4.8.0-cuda C++版本源码编译教程

【opencv】windows10下opencv4.8.0-cuda C版本源码编译教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【opencv】windows10下opencv4.8.0-cuda C版本源码编译教程前言准备工具cuda/cudnncmakeopencv4.8.0opencv_contrib CMake编译VS2019编…...

软碟通制作启动盘

一、下载并安装软碟通 二、插入U盘&#xff0c;打开软碟通&#xff1b; 三、在软碟通中选择“文件”-“打开镜像文件”&#xff0c;选择要制作成启动盘的ISO镜像文件&#xff1b; 1.打开要制作的iso文件 选择对应的iso文件 四、在软碟通中选择“启动”-“写入硬盘”&#xff…...

Tomcat和HPPT协议

1.介绍 1.Java EE 规范 JavaEE&#xff08;java Enterprise Edition&#xff09;&#xff1a;java企业版 JavaEE 规范是很多的java开发技术的总称。这些技术规范都是沿用自J2EE的。一共包括了13个技术规范 2.WEB概述 WEB在计算机领域中代表的是网络 像我们之前所用的WWW&…...

Acwing.4736步行者(模拟)

题目 约翰参加了一场步行比赛。 比赛为期 N 天&#xff0c;参赛者共 M 人&#xff08;包括约翰&#xff09;。 参赛者编号为 1∼M&#xff0c;其中约翰的编号为 P。 每个参赛者的每日步数都将被赛事方记录并公布。 每日步数最多的参赛者是当日的日冠军&#xff08;可以有并…...

前端预览、下载二进制文件流(png、pdf)

前端请求设置 responseType: “blob” 后台接口返回的文件流如下&#xff1a; 拿到后端返回的文件流后&#xff1a; 预览 <iframe :src"previewUrl" frameborder"0" style"width: 500px; height: 500px;"></iframe>1、预览 v…...

搞定ESD(三):ESD干扰耦合路径深入分析(一)

文章目录 一、外部测试环境引发的电场耦合1.1 静电枪枪体的电场耦合1.2 垂直耦合板与水平耦合板的电场耦合二、静电电流泄放路径中的电场耦合2.1 金属平面与敏感信号之间的电场耦合2.2 参考平面与敏感信号布线之间的电场耦合2.3 芯片散热片电场耦合分析2.3.1 散热片静电耦合机理…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...