当前位置: 首页 > news >正文

ACK 云原生 AI 套件:云原生 AI 工程化落地最优路径

作者:胡玉瑜(稚柳)

前言

在过去几年中,人工智能技术取得了突飞猛进的发展,涵盖了机器学习、深度学习和神经网络等关键技术的重大突破,这使得人工智能在各个领域都得到广泛应用,对各行各业产生了深远的影响。

特别值得一提的是,近年来,ChatGPT 的快速发展,使得人工智能技术在自然语言处理和对话生成方面取得了显著进展,让人工智能进一步走进人们的日常生活,改变我们的生活和工作方式。

随着人工智能技术的快速发展和应用,AI 工程化作为“人工智能业务创新的加速器”,也在不断地升级和演进。
为了满足日益增长的算力需求、更高的业务稳定性要求,以及更快的创新和迭代交付,越来越多企业选择在云上开发、训练和部署 AI 模型,利用云计算的优势,获取稳定、弹性的大规模异构算力,从而提高算法迭代和应用落地的效率,并提升规模化服务的可靠性。

同时,云原生技术和架构,如容器、Kubernetes、服务网格和 Serverless 等,也被广泛应用于支持 AI、大数据等多种工作负载类型,以及构建多角色协同的 AI 生产系统,进一步增强了 AI 工程化的弹性、可扩展性和灵活性。

图片

随着越来越多的企业在容器服务 ACK 上构建 AI 系统和应用,无论是 ACK 集群和 AI 平台的运维人员,还是使用容器技术调试和运行深度学习任务的算法工程师,他们都在享受云原生技术和架构带来的便利和高效的同时,仍然面临着持续的运维成本和生产效率的挑战。

因此,为了帮助客户更轻松、高效地在容器服务 ACK 上构建 AI 系统,并提升 AI 生产效率,我们推出了容器服务 ACK 云原生 AI 套件。

旨在利用云原生的技术和架构,为客户提供一个全面的云原生 AI 技术和产品方案,能够帮助客户在容器服务 ACK 上快速、定制化构建 AI 生产系统,并持续优化异构资源效率、高效运行异构负载。 让客户的 AI 工程化落地更加快速和有效,从而提升企业的竞争力和创新能力。

图片

什么是云原生 AI 套件

那云原生 AI 套件是以什么样的形态提供给客户的,适合什么样的客户场景,又具有哪些能力优势呢?

首先,我们看下云原生 AI 套件的产品形态,如何把云原生 AI 的能力提供给客户?

云原生 AI 套件通过多个可组装、可扩展、可定制的组件来提供云原生 AI 能力。以 Kubernetes 容器服务为底座,向下封装对各类异构资源的统一管理,向上提供标准 Kubernetes 集群环境和 API,运行各个核心组件。并结合容器镜像服务,以及可观测、智能诊断、弹性伸缩等容器服务相关能力,提供更加全面的产品方案。

云原生 AI 套件的核心组件能力包括四大分层模块,以满足企业客户不同角色、不同架构层级的场景需求。从下往上依次是异构算力管理、AI 任务管理、AI 数据加速、AI 工程管理。

云原生 AI 工程化的第一步,就是搭建一个 K8s 集群管理云上的异构算力,因此第一层就是异构算力管理模块,包括对异构资源的管理运维、弹性伸缩,以及调度与共享。

有了异构计算集群,算法工程师就可以开始提交 AI 作业,通过 K8s 集群的标准接口访问存储服务,以及进行 AI 作业调度和 GPU 资源分配,最后训练好的模型部署在集群中,这样基本实现了 AI 开发和生产流程。因此,往上一层是 AI 任务管理,包括对 AI 任务的提交运行、调度与弹性。

紧接着,企业对生产效率有了更高要求,也遇到更多问题。包括训练数据访问慢,缺少数据集、模型管理,模型发布缺乏质量和性能验证,上线后缺少服务化运维和治理手段,以及团队协作效率低下,Kubernetes 和容器对于算法工程师和数据科学家有一定使用门槛,等等。

因此,往上就 AI 数据加速和 AI 工程管理。AI 数据加速,包括数据集的抽象和管理、数据的访问加速、数据集的编排等等。AI 工程管理,包括命令行工具和 SDK、AI 开发和运维控制台,以及 MLOps 或者 LLMOps 的优化。客户可以根据具体需求选择不同的组件进行使用,快速、定制化构建自己的 AI 平台,或者直接使用云原生 AI 套件集成的阿里云 AI 平台和服务,从而全栈优化 AI 生产系统的性能、效率和成本。

使用云原生 AI 套件可以实现 GPU 利用率提升 100%,数据访问效率提升 30%,AI 训练速度提升 20%。

图片

那接下来我们具体看一下,四大分层能力模块,分别具备哪些优势特性,如何满足不同角色、不同架构层级、不同业务阶段的需求。

还是以从下往上的顺序来看,让我们看一下异构算力管理模块,我们基于容器服务 ACK 提供了资源的管理运维和弹性伸缩,能够支持 CPU、GPU、vGPU、NPU、FPGA 等异构资源的统一接入、监控、诊断和成本分析,帮助运维人员降低管理大规模 GPU 的复杂度,以及提供智能的削峰填谷,减少资源浪费。云原生 AI 套件还提供了资源调度与共享功能,包括 CPU/GPU 拓扑感知调度和 GPU 共享调度与隔离。CPU/GPU 拓扑感知调度基于节点异构资源的拓扑信息,如 GPU 卡之间的 NVLink、PcleSwitch 等通信方式,以及 CPU 的 NUMA 拓扑结构等,在集群维度进行最佳的调度选择,为工作负载提供更好的性能。GPU 共享调度与隔离,能够实现一个 GPU 供多个任务使用,同时也能够实现一个 GPU 上对各应用申请的显存进行隔离以及 GPU 的算力分割,从而提升 GPU 的资源利用率。

接着看一下 AI 任务管理模块,云原生 AI 套件兼容主流 AI 框架和工具,包括 tensorflow、pytorch、JupyterLab、TF-Serving、Triton 等等,也在不断的适配新的分布式训练和推理的框架,如 deepspeed、fasttransformer 等等,能够用统一的方式提交和管理任务。同时,支持集成 Kubeflow Pipelines 或 Argo 云原生工作流引擎,为复杂的 AI 任务提供工作流编排服务。AI 任务管理模块还提供多种调度策略,适用于各种典型的批量任务类型,如 AI 分布式训练。通过 ACK 调度器扩展 Kubernetes 原生调度框架,实现多种典型批量调度策略,包括 Gang Scheduling、Capacity Scheduling、Fair sharing、Binpack/Spread 等,以满足不同任务的调度需求。还支持任务队列,提供自定义的任务优先级管理和租户弹性资源配额控制,提高任务调度和资源利用的效率。此外,还支持弹性训练和推理任务,以提升任务运行的效率和优化成本。

再看一下 AI 数据加速模块,该模块主要通过面向云原生数据密集型应用的数据编排框架 Fluid 来支持。Fluid 提出弹性数据集的概念,将不同位置和类型的存储服务作为数据源聚合到同一数据集中,以实现数据的统一管理。Fluid 支持多种分布式缓存引擎,包括阿里云 JindoRuntime、EFCRuntime,以及开源社区提供的 AlluxioRuntime、JuiceFSRuntime,同时还可以通过对接 Fluid 的标准接口来扩展第三方或者自建的存储系统。结合 Fluid 提供数据集缓存预热,以及缓存数据的容量监控和弹性伸缩等功能,来降低计算任务拉取数据的开销,提升 GPU 计算效率。Fluid 还支持 Serverless 数据访问加速,实现数据访问吞吐的弹性扩容,以及混合云数据访问加速,在弹性上云的同时能够安全、快速地访问自建存储。Fluid 还支持应用协同编排和自动化数据流等功能,让用户在云上使用数据的过程更加简单化和自动化。

最后是 AI 工程管理模块,除了提供 Arena 命令行工具和 SDK,来屏蔽底层复杂性,简化任务管理之外,还提供简单的运维大盘和开发控制台,满足用户快速浏览集群状态、提交和查看任务的需要。同时,云原生 AI 套件致力于持续优化 AI 生产效率和体验,并且全面拥抱大模型生态,支持 MLOps、LLMOps 等相关领域的需求。

图片

通过前面的介绍,相信您已经基本了解了云原生 AI 套件,接下来让我们一起看两个典型的客户案例吧!

客户案例

第一个是任意门: 基于云原生 AI 套件打造人工智能社交网络平台的案例。

任意门的 SoulAPP 是基于兴趣图谱和游戏化玩法构建的移动社交网络,有丰富的 AI 业务场景,包括语音匹配、聊天机器人、文本识别、图像识别、多模态等。

但在传统的虚拟机构建部署方式下,缺乏一个统一的管控平台,导致:

  • 业务迭代速度慢:研发工程师需要花费大量时间在底层资源和环境的准备、管理和运维上,无法专注于业务开发。
  • 运维工作重复:需要做很多重复的环境配置和问题处理,人力投入大,运维效率低。
  • 资源性价比低:有大量堆积机器,且资源利用率低,导致资源闲置浪费。

任意门在阿里云上,通过容器服务 ACK 云原生AI 套件,构建了符合开源标准、自主掌控的 AI PaaS 平台,管理了从初期的数十张 GPU 卡到近千张的超大规模,节省 1 倍运维成本。并且开发迭代效率提升 2~5 倍,日承载 AI 业务发布数百次,很好地支撑了业务的高速发展。通过 GPU 共享及 Fluid 数据加速能力,提升业务效能,资源成本节约 50%。

图片

第二个案例是小米机器学习平台: 基于 Fluid 的 Serverless 混合云容器 AI 平台。

小米机器学习平台(CloudML)承载了图像、NLP、声学、搜索推荐等应用业务,是小米针对机器学习进行全流程优化的高性能、分布式云服务。

支撑 CloudML 的自建集群由于资源池容量、资源弹性能力相对有限,导致业务低谷时资源闲置成本高,业务高峰时资源紧张。迁移到基于 Serverless 容器架构的混合云之后,获得了 Serverless 容器带来的敏捷、安全、弹性、低成本等优势,然而也遇到了几个重要的技术挑战:

  • 无法定制扩展存储类型:公有云集群只支持阿里云存储类型(如 NAS、OSS等),无法直接适配内部自研的分布式文件存储(StarFS)。
  • 缺乏可信透明的数据接入方式:如何在 Serverless 容器的黑盒系统使用过程中规避数据泄露,如何确保数据存储、传输、访问过程中安全可靠,缺乏对应的解决方案。
  • 基础设施差异导致用户体验不一致:混合云场景中,当用户任务在公有云和自建集群之间进行迁移时,用户使用体验需要与自建集群上保持一致,不需要做过多的变更。

通过阿里云 ACK 云原生 AI 套件中提供的 Fluid 存储系统接入方案可以很好的解决以上问题:

首先,对于自建存储 StarFS 的访问提供了很好的扩展支持,并且得益于 Fluid 提供的数据集可观测性功能,能够获取云上工作负载的数据访问特性,从而支持数据热加载和资源分配调优。

其次,方案接入简单、管理便捷。可以自行完成 StarFS 与 Kubernetes 环境的对接工作,整个 thinRuntime开发简单,无需具备复杂的 Kubernetes 定制开发知识。

基于这套方案,只需要了解 Dockerfile 构建就可以完成,开发工作 2-3 小时左右,显著降低了使用 ECI 接入 StarFS 的工作成本。

图片

了解了云原生 AI 套件的能力优势和客户案例,如果您的业务也有类似的需求,那接下来我们就介绍一下云原生 AI 套件怎么用,并且会提供一些有趣的实验让您快速上手。

云原生 AI 套件用法

云原生 AI 套件通常存在两类用户角色,运维管理员主要负责搭建 AI 基础架构和日常管理,而数据科学家和算法工程师则使用云原生 AI 套件提交和管理任务。

这两类角色可以通过命令行工具和控制台进行高效的操作和协同。

首先运维管理员需要先创建和配置 ACK 集群,以及相关的资源和服务,并添加异构资源进行管理和运维。接着进行系统与环境搭建,包括开通和安装云原生 AI 套件,管理用户和配额,准备数据等工作。完成这些准备工作后,算法工程师和数据科学家就可以开始使用云原生 AI 套件提供的命令行工具 Arena 或 AI 套件开发控制台,进行模型的开发、训练与部署,利用调度、弹性、数据访问加速等能力,提高 AI 生产效率和性能,以及进行推理的服务化运维。运维管理员则可以通过运维控制台查看集群、节点、训练任务、资源配额、成本分析等监控大盘,从而对集群进行实时监控和管理。

这种高效协同的工作模式,能够提高生产效率,优化资源利用和管理。

图片

如果您想先从部分简单的功能入手,快速入门云原生 AI 套件,我们为您准备了低门槛、低成本的保姆级实验教程,让您通过简单有趣的小场景,感受云原生 AI 套件加速 AI 工程化的过程。

关于费用呢,云原生 AI 套件是按量计费,先试用,后付费。

使用云原生 AI 套件所产生费用 = 云原生 AI 套件费用 + ACK 费用 + 其他云产品费用

云原生 AI 套件采用阶梯型计费方式,若 GPU 卡数当日最大值不超过 8 张,云原生 AI 套件本身免费。

如果您希望全面、深入地了解云原生 AI 套件的更多能力,我们还为您提供了云原生 AI 工程化实践系列课程,这些课程将帮助您上手云原生 AI 套件的更多功能和最佳实践,让您能够更好地应用于实际项目中。

除了课程,我们还为您提供了交流群,您可以与我们进行互动和交流。在交流群中,您可以及时了解云原生 AI 套件的产品动态,探讨云原生 AI 最新的技术发展。同时,我们也将根据您的业务场景,为您提供更加针对性的解决方案和服务支持。

实验 1:云原生 AI 套件:五分钟微调宝可梦风格 StableDiffusion [ 1]

实验 2:云原生 AI 套件:一键训练大模型及部署 GPU 共享推理服务 [ 2]

更多实验请见:云原生 AI 工程化实践系列课 [ 3]

图片

希望您能够持续关注云原生 AI 套件,让我们帮助您以云原生的技术和架构加速 AI 工程化落地,提高 AI 生产效率并优化成本,同时,我们也将不断发掘云原生 AI 的技术和应用,为您提供更加丰富的产品能力,更加优质的服务和体验。欢迎使用钉钉通过搜索群码的方式与我们一起沟通。(钉钉群号:33214567)

相关链接:

[1] 云原生 AI 套件:五分钟微调宝可梦风格 StableDiffusion

https://developer.aliyun.com/adc/scenario/5d4b9f5be5104302b9c4ca2fd1a4755e

[2] 云原生 AI 套件:一键训练大模型及部署 GPU 共享推理服务

https://developer.aliyun.com/adc/scenario/99e00d4dea0e4fbf952780b30136209d

[3] 云原生 AI 工程化实践系列课

https://developer.aliyun.com/adc/scenarioSeries/e5427732f6e94cde939a7aeed1d19180

相关文章:

ACK 云原生 AI 套件:云原生 AI 工程化落地最优路径

作者:胡玉瑜(稚柳) 前言 在过去几年中,人工智能技术取得了突飞猛进的发展,涵盖了机器学习、深度学习和神经网络等关键技术的重大突破,这使得人工智能在各个领域都得到广泛应用,对各行各业产生了深远的影响。 特别值…...

工程企业管理软件源码-综合型项目管理软件

工程项目管理软件(工程项目管理系统)对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营,全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&am…...

stm32mp157中断简单应用

设置按键中断,按键1按下,LED亮,再按一次,灭 按键2按下,蜂鸣器响。再按一次,不响 按键3按下,风扇转,再按一次,风扇停 main.c #include "gpio.h" #include &…...

智慧机场数字孪生大屏升级智慧出行全方位服务

在宁波栎社国际机场的信息中心大楼内,一块大屏幕上展示了一座“数字孪生”机场。通过点击屏幕上的各个板块,可以实时查看现场情况,一旦出现突发状况,还可以立即启动闭环处置流程…… (图源自宁波机场) 在数…...

微信小程序 js中写一个px单位转rpx单位的函数

大家写东西自然还是会比较喜欢用rpx 但是 事实证明 在js中 还是px好用 因为很多单位交互的函数还是只返回px单位的 理论上将 750 rpx 是整个屏幕的宽度 那么 我们可以这样写一个函数 pxToRpx(px) {//获取整个屏幕的宽度单位 pxlet screenWidth wx.getSystemInfoSync().scree…...

第14章总结:lambda表达式与处理

14.1: lambada表达式 14.1.1:lambada表达式简介 无参数 package fourteen; interface SayhHi{ String say();//抽象方法接口 } public class NoParamDemo { public static void main(String[] args) { //无参数 …...

多尺度retinex图像去雾算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; warning off; addpath(genpath(pwd)); rng(default)img_in im2doub…...

蓝桥等考Python组别十八级005

第一部分:选择题 1、Python L18 (15分) 运行下面程序,输入30,输出的结果是( )。 t = int(input()) if t < 30: print(0) else: print(t // 15 * 2) 4102030正确答案:A 2、Python L18 (15分)...

redis在linux系统的安装与使用

一、单机安装Redis。 1.安装redis依赖 在控制台输入 yum install -y gcc tcl2.上传安装包 下载好的安装包上传到/usr/local/src/ 上传方法&#xff1a; 1.确保你拥有Linux服务器的IP地址、用户名和密码。 2.在Windows上&#xff0c;打开命令提示符&#xff08;Command Promp…...

PanoFlow:学习360°用于周围时间理解的光流

1.摘要&#xff1a; 光流估计是自动驾驶和机器人系统中的一项基本任务&#xff0c;它能够在时间上解释交通场景。自动驾驶汽车显然受益于360提供的超宽视野&#xff08;FoV&#xff09;◦ 全景传感器。 然而&#xff0c;由于全景相机独特的成像过程&#xff0c;为针孔图像设计…...

C# - 常用API

Assembly.GetCallingAssembly 方法 获取当前方法的调用程序集: Console.WriteLine("FirstMethod called from: " Assembly.GetCallingAssembly().FullName); Assembly.GetExecutingAssembly 方法 获取包含当前执行的代码的程序集: //获取当前执行的代码的程序集…...

新式茶饮品牌如何写出生活感软文

居民消费水平的提升使新式茶饮品牌的市场不断扩张&#xff0c;在竞争激烈的茶饮市场中&#xff0c;品牌提高知名度的主要方式之一就是软文营销&#xff0c;而生活感软文是茶饮软文中较为常见的类型&#xff0c;它能有效拉进品牌与消费者之间的距离&#xff0c;那么新式茶饮品牌…...

使用c++视觉处理----canny 边缘检测、sobel边缘检测、scharr 滤波边缘检测

使用c视觉处理canny 边缘检测、sobel边缘检测、scharr 滤波边缘检测 #include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image cv::imread("1.jpg", cv::IMREAD_GRAYSCALE); // 转为灰度图像if (image.empty()) {std::cerr << "无法加…...

gogs和drone如何配合使用

上篇介绍了drone和gogs安装方法&#xff0c;这次介绍这两个如何使用&#xff0c;此篇文章主要介绍在物理机上进行发布。 此处用到的java项目地址&#xff1a;https://gitee.com/huningfei/demo-test 一 配置gogs 1.1 在Gogs中配置指定仓库的”.drone.yml“文件 1.2 ssh-drone…...

Feign客户端的配置与使用

feign Feign的基本使用Feign客户端抽取 Feign的基本使用 Feign是一个声明式的Web服务客户端&#xff0c;它使得编写Web服务客户端变得更加简单。 1、首先&#xff0c;需要在项目中引入Feign的相关依赖。在Maven项目中&#xff0c;可以添加以下依赖&#xff1a; <dependen…...

【数据结构】队列(Queue)实现详解

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;数据结构 &#x1f525;该文章主要了解实现队列的相关操作。 目录&#xff1a; &#x1f30d; 队列&#x1f52d;概念&#x1f52d;结构&…...

23.10.13数据库升级流程记录

23.10.13数据库升级流程记录 hello&#xff0c;我是阿昌&#xff0c;今天记录一下数据库升级的流程&#xff0c;内容如下&#xff1a; 一、升级的内容 将之前的数据库升级为8.0版本&#xff0c;切只涉及一个分库&#xff1b; 二、升级的时机 涉及到数据库升级&#xff0c;…...

【three.js】结合vue进行开发第一个3d页面

一、创建vue项目 新建一个项目目录&#xff0c;在集成终端打开&#xff0c;输入 npm init vitelatest 回车后&#xff0c;依次输入项目名&#xff0c;选择vue和js开发 然后安装依赖并运行项目 二、安装three 接下来我们开始安装three npm install three 三、Three.js 的…...

【Vue】同一个页面多次复用同一个组件数据相互干扰问题

文章目录 问题描述解决方法 问题描述 第二个child会受到第一个child的影响而线上666的值 <template><child :value"666" /><child /> </template> <script> import child from ./child; export default {components: {child,},data(…...

【深度学习实验】卷积神经网络(八):使用深度残差神经网络ResNet完成图片多分类任务

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集&#xff08;CIFAR10Dataset&#xff09; a. read_csv_labels&#xff08;&#xff09; b. CIFAR10Dataset 2. 构建模型&#xff08;FeedForward&#x…...

HarmonyOS学习 -- ArkTS开发语言入门

文章目录 一、编程语言介绍二、TypeScript基础类型1. 布尔值2. 数字3. 字符串4. 数组5. 元组6. 枚举7. unknown8. void9. null 和 undefined10. 联合类型 三、TypeScript基础知识条件语句if语句switch语句 函数定义有名函数和匿名函数可选参数剩余参数箭头函数 类1. 类的定义2.…...

早安心语|不委屈不将就,让生活充满仪式感

1、让自己的生活多一种可能&#xff0c;给自己的未来多一份惊喜&#xff0c;人生所有的机会和惊喜&#xff0c;都是在你全力以赴的道路上遇到的。 2、推开自己喜欢的人叫成长&#xff0c;留住自己喜欢的人叫本事&#xff0c;总有人嫌你不够好&#xff0c;也有人觉得你哪都好&am…...

[Python进阶] 操纵键盘:pyuserinput

6.3 操纵键盘&#xff1a;pyuserinput 6.3.1 说明 在安装pyuserinput库时会自动安装PyMouse和PyKeyboard库。前者主要用来操作鼠标&#xff0c;包括鼠标的点击、移动等。后者主要用来操作键盘&#xff0c;包括键盘按键的按下、弹起等。这两个库还可以同时对鼠标和键盘的事件进…...

解析Moonbeam的安全性、互操作性和市场竞争力

Moonbeam依托Polkadot Substrate框架构建&#xff0c;用Rust程序设计语言创建的智能合约区块链平台&#xff0c;在继承Polkadot安全性的基础上为项目提供以太坊虚拟机&#xff08;EVM&#xff09;的兼容性和原生的跨链互操作性优势。Moonbeam的EVM兼容性表示开发者无需学习Subs…...

RPA是什么?怎么成为RPA高手?

RPA&#xff08;Robotic Process Automation&#xff0c;机器人流程自动化&#xff09;是一种技术&#xff0c;通过软件机器人模拟人类在计算机上执行重复性任务&#xff0c;从而提高生产力、减少错误并降低成本。RPA 可以广泛应用于金融、医疗、制造、零售等多个行业&#xff…...

Apache Shiro 漏洞复现

文章目录 Apache Shiro 漏洞复现1. Apache Shiro 1.2.4 反序列化漏洞1.1 漏洞描述1.2 漏洞原理1.3 漏洞复现1.3.1 环境启动 1.4 漏洞利用1.5 修复方案 Apache Shiro 漏洞复现 链接地址&#xff1a;Vulhub - Docker-Compose file for vulnerability environment 1. Apache Shi…...

炒现货白银的最佳时间

天时地利人和是我们进行现货白银投资最关键的因素。天时是指我们因时而动&#xff0c;在适合的时机出击。地利&#xff0c;就是我们对市场的定位&#xff0c;对自己入场的定位有清晰的了解&#xff0c;并且这些位置对我们有利。人和就是指投资者的状态很好&#xff0c;对如何进…...

C# OpenVINO 人脸识别

效果 耗时 Preprocess: 1.41ms Infer: 4.38ms Postprocess: 0.03ms Total: 5.82ms 项目 代码 using OpenCvSharp; using Sdcb.OpenVINO; using System; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.Text; using Syste…...

ESP32-WROOM-32无法进入下载模式进行程序上传的问题

结论 先说结论&#xff0c;ESP32-WROOM-32无法进入下载模式通过串口进行程序上传&#xff0c;可能是GPIO2引脚没有通过下拉电阻拉低&#xff0c;导致无法进入正确的启动模式。 启动模式 ESP32启动时会打印rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT) 复位源rs…...

尚硅谷Flink(一)

目录 ☄️前置工作 fenfa脚本 &#x1f30b;概述 ☄️Flink是什么 ☄️特点&#xff08;多nb&#xff09; ☄️应用场景&#xff08;不用看&#xff09; ☄️分层API &#x1f30b;配环境 ☄️wordcount ☄️WcDemoUnboundStreaming &#x1f30b;集群部署 ☄️集…...