当前位置: 首页 > news >正文

44.ES

一、ES。

(1)es概念。

(1.1)什么是es。

(1.2)es的发展。

es是基于lucene写的。

(1.3)总结。

es是基于lucene写的。

(2)倒排索引。

(3)es与mysql的概念对比。

索引:对应数据表。

文档:对应数据表记录。

词条:一条数据表记录有若干词条。


(4)部署es、kibana、IK分词器。

(4.1)部署单点es。

(4.1.1)创建网络。

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络: 

docker network create es-net

(4.1.2)加载镜像。

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

大家将其上传到虚拟机中,然后运行命令加载即可:

docker load -i es.tar

同理还有kibana的tar包也需要这样做。

(4.1.3)运行es容器。

运行docker命令,部署单点es:

docker run -d \
    --name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

数据卷挂载提示:docker run -v <宿主机路径>:<容器路径> <镜像名称>

命令解释:

--e "cluster.name=es-docker-cluster":设置集群名称
-e "http.host=0.0.0.0":监听的地址,可以外网访问
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
-e "discovery.type=single-node":非集群模式
-v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
-v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
-v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
--privileged:授予逻辑卷访问权
--network es-net :加入一个名为es-net的网络中
-p 9200:9200:端口映射配置

在浏览器中输入:

http://192.168.150.101:9200

即可看到elasticsearch的响应结果。

(4.2)部署bibana。

(4.2.1)运行docker命令,部署kibana。

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1

命令解释:

--network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
-e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
-p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问(注意该IP地址):

http://192.168.150.101:5601

即可看到结果

(4.2.2)DevTools。

点击Dev tools

kibana中提供了一个DevTools界面:

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

(4.3)安装IK分词器。

(4.3.1)在线安装ik插件(较慢)。 

# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch

(4.3.2)离线安装ik插件(推荐)。

(4.3.2.1)查看数据卷目录。

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

提示:只要将ik分词器放到挂载到容器的主机挂载目录下就行,当时运行容器的时候挂载了:

-v es-plugins:/usr/share/elasticsearch/plugins 

显示结果:

[{"CreatedAt": "2022-05-06T10:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

(4.3.2.2)解压缩分词器安装包。

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik

(4.3.2.3)上传到es容器的插件数据卷中。

也就是/var/lib/docker/volumes/es-plugins/_data 

(4.3.2.4)重启容器。
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
(4.3.2.5)测试。

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{"analyzer": "ik_max_word","text": "黑马程序员学习java太棒了"
}

结果:

{"tokens" : [{"token" : "黑马","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "程序员","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 1},{"token" : "程序","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 2},{"token" : "员","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 3},{"token" : "学习","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 4},{"token" : "java","start_offset" : 7,"end_offset" : 11,"type" : "ENGLISH","position" : 5},{"token" : "太棒了","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 6},{"token" : "太棒","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 7},{"token" : "了","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 8}]
}
(4.3.3.6)扩展词词典。

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4)重启elasticsearch

docker restart es# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{"analyzer": "ik_max_word","text": "传智播客Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

(4.3.3.7)停用词词典。

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

黑马

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{"analyzer": "ik_max_word","text": "传智播客Java就业率超过95%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

(5)索引库操作(即表操作)。

(5.1)mapping映射属性。

(5.2)索引库的CRUD。

(5.2.1)创建索引库。

分词器只对text类型的数据分词。(不分词代表整个内容就是一个词条,分词就是整个内容可能超过一个词条)。

index约束如果为真,则参与倒排索引,否则不参与倒排索引(即不成为词条)。

PUT /itheima
{"mappings": {"properties": {"info": {"type": "text","analyzer": "ik_smart"},"email": {"type": "keyword","index": false},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}

(5.2.2)查看、删除索引库。

(5.2.3)修改索引库。

(5.2.4)索引库操作有哪些? 

(6)文档操作。

(6.1)新增文档。

(6.2)查询、删除文档。

(6.3)修改文档。

注意:测试了一下,这也是全量修改。 

POST /itheima/_doc/1
{"info": "1黑马程序员java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

(6.4)文档操作总结。

(7)RestClient操作索引库。

(7.1)初始化JavaRestClient、创建索引库。

(7.2)删除索引库、判断索引库是否存在。

(7.3)总结。

(8)RestClient操作文档。

(8.1)新增文档。

案例的mapping: 

# 酒店的mapping
PUT /hotel
{"mappings": {"properties": {"id": {"type": "keyword"},"name": {"type": "text","analyzer": "ik_max_word"},"address": {"type": "keyword","index": false},"price": {"type": "integer"},"score": {"type": "integer"},"brand": {"type": "keyword"},"city": {"type": "keyword"},"starName": {"type": "keyword"},"business": {"type": "keyword"},"location": {"type": "geo_point"},"pic": {"type": "binary","index": false}}}
}

(8.2)查询文档。

(8.3)修改文档。

 (8.4)删除文档。

(8.5)批量导入文档。

(8.6)总结。

(9)DSL查询文档。

(9.1)DSL查询分类。

(9.2)查询所有。

GET /hotel/_search
{"query": {"match_all": {}}
}

(9.3)全文检索查询。

GET /hotel/_search
{"query": {"match": {"business": "交大/闵行经济开发区"}}
}GET /hotel/_search
{"query": {"multi_match": {"query": "上海滩","fields": ["name","city","brand"]}}
}

(9.4)精准查询。

# term查询
GET /hotel/_search
{"query": {"term": {"city": {"value": "上海"}}}
}# range查询
GET /hotel/_search
{"query": {"range": {"price": {"gte": 100,"lte": 2000}}}
}

(9.5)地理坐标查询。

# 地理查询
GET /hotel/_search
{"query": {"geo_distance": {"distance": "150km","location": "31.21,122.6"}}
}

(9.6)组合查询。

相关文章:

44.ES

一、ES。 &#xff08;1&#xff09;es概念。 &#xff08;1.1&#xff09;什么是es。 &#xff08;1.2&#xff09;es的发展。 es是基于lucene写的。 &#xff08;1.3&#xff09;总结。 es是基于lucene写的。 &#xff08;2&#xff09;倒排索引。 &#xff08;3&#xf…...

分权分域有啥内容?

目前的系统有什么问题&#xff1f; 现在我们的系统越来越庞大&#xff0c;可是每一个人进来的查看到的内容完全一样&#xff0c;没有办法灵活的根据不同用户展示不同的数据 例如我们有一个系统&#xff0c;期望不同权限的用户可以看到不同类型的页面&#xff0c;同一个页面不…...

6.Docker搭建RabbitMQ

1、端口开放 如果在云服务上部署需在安全组开通一下端口&#xff1a;15672、5672、25672、61613、1883。 15672(UI页面通信口)、5672(client端通信口)、25672(server间内部通信口)、61613(stomp 消息传输)、1883(MQTT消息队列遥测传输)。 2、安装镜像 docker pull rabbitmq 3、…...

用 docker 创建 jmeter 容器, 实现性能测试,该如何下手?

用 docker 创建 jmeter 容器, 实现性能测试 我们都知道&#xff0c;jmeter可以做接口测试&#xff0c;也可以用于性能测试&#xff0c;现在企业中性能测试也大多使用jmeter。docker是最近这些年流行起来的容器部署工具&#xff0c;可以创建一个容器&#xff0c;然后把项目放到…...

4年软件测试,突破不了20K,太卷了。。。

先说一个插曲&#xff1a;上个月我有同学在深圳被裁员了&#xff0c;和我一样都是软件测试&#xff0c;不过他是平安外包&#xff0c;所以整个组都撤了&#xff0c;他工资和我差不多都是14K。 现在IT互联网已经比较寒冬&#xff0c;特别是软件测试&#xff0c;裁员先裁测试&am…...

机器人控制算法——两轮差速驱动运动模型

1.Introduction 本文主要介绍针对于两轮差速模型的逆运动学数学推导。因为在机器人控制领域&#xff0c;决策规划控制层给执行器输出的控制指令v(车辆前进速度)和w(角速度)&#xff0c;因此&#xff0c;我们比较关心&#xff0c;当底层两个驱动电机接收到此信息&#xff0c;如何…...

Queue简介

概念&#xff1a; 队列&#xff08;Queue&#xff09;是一种常见的线性数据结构&#xff0c;在Java中用于存储和操作元素序列。它基于先进先出&#xff08;First-In-First-Out, FIFO&#xff09;原则&#xff0c;即最早入队的元素首先出队。只能在队尾添加元素&#xff0c;在队…...

被面试官问到分布式ID,别再傻乎乎只会答雪花算法了...

文章目录 1. 分布式ID2. 数据库主键自增3. 数据库号段模式4. Redis自增5. UUID6. Snowflake (雪花算法)7. Leaf (美团分布式ID生成系统)7.1 Leaf-segment 号段方案7.1.2 双buffer优化 7.2 Leaf-snowflake方案7.3 Leaf-snowflake Demo 1. 分布式ID 在分布式系统中&#xff0c;通…...

使用Boto3访问AWS S3服务

安装Boto3&#xff0c;执行如下命令&#xff1a; python -m venv .venv . .venv/bin/activate python -m pip install boto3创建配置文件&#xff0c;执行如下命令&#xff1a; mkdir -p ~/.aws touch ~/.aws/credentials touch ~/.aws/config编辑 ~/.aws/credentials&#x…...

ODrive移植keil(五)—— 开环控制和电流变换

目录 一、开环控制1.1、控制原理1.2、硬件接线1.3、代码说明1.4、程序演示1.5、程序架构的体现 二、电流变换2.1、理论说明2.2、代码说明 ODrive、VESC和SimpleFOC 教程链接汇总&#xff1a;请点击 一、开环控制 在SimpleFOC系列中有开环控制的教程&#xff0c;SimpleFOC移植S…...

【Java学习之道】日期与时间处理类

引言 在前面的章节中&#xff0c;我们介绍了Java语言的基础知识和核心技能&#xff0c;现在我们将进一步探讨Java中的常用类库和工具。这些工具和类库将帮助我们更高效地进行Java程序开发。在本节中&#xff0c;我们将一起学习日期与时间处理类的使用。 一、为什么需要日期和…...

信息系统项目管理师第四版学习笔记——高级项目管理

项目集管理 项目集管理角色和职责 在项目集管理中涉及的相关角色主要包括&#xff1a;项目集发起人、项目集指导委员会、项目集经理、其他影响项目集的干系人。 项目集发起人和收益人是负责承诺将组织的资源应用于项目集&#xff0c;并致力于使项目集取得成功的人。 项目集…...

MySQL建表操作和用户权限

1.创建数据库school&#xff0c;字符集为utf8 mysql> create database school character set utf8; 2.在school数据库中创建Student和Score表 mysql> create table school.student( -> Id int(10) primary key, -> Stu_id int(10) not null, -> C_n…...

TCP/IP(十一)TCP的连接管理(八)socket网络编程

一 socket网络编程 socket 基本操作函数 bind、listen、connect、accept、recv、send、select、close 说明: 本文需要C语言、syscall系统调用、OS 操作系统基础理论,如果不了解可以暂时跳过目标&#xff1a; 知道对应库函数的更底层机制思考&#xff1a; socket函数与FIN、A…...

第五章 图

第五章 图 图的基本概念图的应用背景图的定义和术语 图的存储结构邻接矩阵邻接表 图的遍历连通图的深度优先搜索连通图的广度优先搜索 图的应用最小生成树拓扑排序 小试牛刀 图的基本概念 图结构中&#xff0c;任意两个结点之间都可能相关&#xff1b;而在树中&#xff0c;结点…...

深度学习实战:用Keras搭建深度学习网络做手写数字识别

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…...

算法解析:LeetCode——机器人碰撞和最低票价

摘要&#xff1a;本文由葡萄城技术团队原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 机器人碰撞 问题&#xff1a; 现有 n 个机器人&#xff0c;编号从 1 开始&#xff0c;每个…...

LeetCode刷题总结 - LeetCode 热题 100 - 持续更新

LeetCode 热题 100 其他系列哈希1. 两数之和49. 字母异位词分组128. 最长连续序列 双指针27. 移除元素283. 移动零11. 盛最多水的容器剑指 Offer II 007. 数组中和为 0 的三个数42. 接雨水 滑动窗口438. 找到字符串中所有字母异位词3. 无重复字符的最长子串 字串560. 和为 K 的…...

Spring是什么?为什么要使用Spring?

目录 前言 一、Spring是什么&#xff1f; 1.1 轻量级 1.2 JavaEE的解决方案 二、为什么要使用Spring 2.1 传统方式完成业务逻辑 2.2 使用Spring模式完成业务逻辑 三、为什么使用Spring&#xff1f; 前言 本文主要介绍Spring是什么&#xff0c;并且解释为何要去使用Spring&…...

自我监督学习日志

学习日志 10.12 一天学不了一分钟&#xff0c;不知道为什么也就是了 今天一定要学一个小时&#xff01; 机器学习就是机器帮我们找一个函数 语音辨识&#xff0c;语音&#xff0c;声音讯号 转化为文字 帮我们找一个人类写不出来的复杂函数 类神经网络 输入 一张图片用一个矩…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...