Ps:选区的布尔运算
选区的布尔 Boolean运算指的是选区之间的相加(并集)、相减(差集)以及相交(交集),从而形成一个新的选区。
◆ ◆ ◆
使用工具选项栏
在 Ps 中,几乎所有的选区工具的工具选项栏上都有这四个按钮,如下图所示。

新选区
New selection
默认选项。
在此选项时,若画布中无选区,则创建新选区。
若画布中有选区,则新选区替换原来的选区。
添加到选区
Add to selection
将新绘制的选区添加到已有选区。
从选区减去
Subtract from selection
从已有选区中减去新绘制的区域。
与选区交叉
Intersect with selection
仅保留与已有选区相交的区域。
说明:
在实质操作时,建议保持在启用“新选区”按钮状态,并使用辅助键进行切换。注意观察鼠标形状的变化。
按住 Shift 键,添加到选区。按住 Alt 键,从选区减去。按住 Alt + Shift 键,与选区相交。
◆ ◆ ◆
使用图层面板
按住 Ctrl 键点击图层面板上的图层缩览图,可基于图层像素的透明度 Transparency将其载入为新的选区。不透明的完全选择,透明的则不选择,半透明的局部选择。
按住 Ctrl + Alt 键点击图层缩览图,则从当前画布上已有的选区中减去。按住 Ctrl + Alt + Shift 键点击图层缩览图,则与当前画布上已有的选区相交。
以上操作也可以在选中图层之后通过菜单命令来实现。
Ps菜单:选择/载入选区
Select/Load Selection

还可以从“通道”列表中选择当前图层的图层蒙版(如果有的话)或者是已建好的 Alpha 通道。
◆ ◆ ◆
使用通道或蒙版
Alpha 通道或蒙版本身存储的就是选区信息。白色代表选择,黑色代表不选择,灰色代表局部选择。
按住 Ctrl 键点击通道缩览图或蒙版缩览图,可将其载入为新的选区。
按住 Ctrl + Alt 键点击通道缩览图或蒙版缩览图,则从已有的选区中减去。按住 Ctrl + Alt + Shift 键点击通道缩览图或蒙版缩览图,则与已有的选区相交。
如果 Alpha 通道或图层蒙版上有灰色区域(即半透明区域),按住 Ctrl + Alt + Shift 键连续点击缩览图可渐次收缩选区。
对于原色通道,也可以按上述方式处理,同样也是基于通道上的黑白灰信息来创建选区。
对于复合通道,则是基于明度信息(本质上也是黑白灰)创建选区。

“点赞有美意,赞赏是鼓励”
相关文章:
Ps:选区的布尔运算
选区的布尔 Boolean运算指的是选区之间的相加(并集)、相减(差集)以及相交(交集),从而形成一个新的选区。 ◆ ◆ ◆ 使用工具选项栏 在 Ps 中,几乎所有的选区工具的工具选项栏上都有…...
PyTorch 深度学习之卷积神经网络(基础篇)Basic CNN(九)
0. Revision: Fully connected Neural Network 全连接 1. Convolution Neural Network 保留空间信息 1.1 Convolution Convolution-Single Input Channel 单通道 数乘 3 input Channels 3通道 N input Channels N input Channels and M output channel M 个卷积核 1.2 conv…...
torch实现Gated PixelCNN
文章目录 PixelCNNGated PixelCNN PixelCNN import torch import torch.nn as nn import torch.nn.functional as F# Pixel CNNclass MaskConv2d(nn.Module):def __init__(self, conv_type, *args, **kwags):super().__init__()assert conv_type in (A, B)self.conv nn.Conv2…...
破局「二次创业」:合思的新解法
在新的水温下,寻找更为良性的发展正在成为企业的必答题。对此,合思给出的不仅是一份更“省”的答题方法。也更是从认知层到行动层,最后到工具层的一张授人以渔的“渔网”。 作者|思杭 编辑|皮爷 出品|产业家 今年4月初,广州…...
第五章:TCP和UDP基本原理
TCP和UDP基本原理 一、TCP/IP传输层的作用二、 端口1.范围2. 服务端3. 客户端4. 常见知名端口号4.1 TCP 80 HTTP4.2 TCP 20 21 FTP4.3 TCP 23 TELNET4.4 TCP 25 SMTP4.5 UDP 53 DNS4.6 TCP 443 HTTPS 三、 TCP原理1. TCP头部封装格式1.1 Source Port 源端口1.2 Destination Por…...
算法:动态规划的入门理解
文章目录 算法原理题目解析第n个泰波那契数列三步问题使用最小花费爬楼梯 从本篇开始总结的是动态规划的一些内容,动态规划是算法中非常重要的一个版块,因此也是学习算法中的一个重点,在学习动态规划前应当要把动态规划的基础知识学习一下 算…...
最新版nacos 2.2.3服务注册与发现版本依赖问题
最新版nacos的注册服务时配置文件写的是对的,但就是在nacos web页面无法看见服务,此时你需要注意你的依赖是否正确 spring: application:name: orderservicecloud:nacos:discovery:server-addr: 122.51.115.127:8848父工程依赖:现在最新的s…...
2023年中国合同能源管理行业研究报告
第一章 行业概况 1.1 定义及分类 合同能源管理 (Energy Performance Contracting, EPC) 是当前能源行业中一个重要的概念,它构建了一个桥梁,将节能服务公司 (Energy Management Company, EMCo) 与用能单位紧密联系在一起。通过特定的契约形式ÿ…...
php以半小时为单位,输出指定的时间范围
//可预订小时范围$hour [];for ($i$startHour*3600;$i<$endHour*3600;$i1800){//以半小时为单位输出$startHourItem date(H:i,strtotime(date(Y-m-d))$i);//小时开始$endHourItem date(H:i,strtotime(date(Y-m-d))$i1800);//当前时间再加半小时$hourItemStr $startHourI…...
Electron应用的 asar 打包 解压
前言: .asar文件是一种归档文件格式,通常用于封装Electron应用程序的资源。Electron是一个使得开发者能够使用Web技术构建跨平台桌面应用程序的框架。为了提高性能和简化部署,Electron应用程序的资源通常会被打包到一个.asar文件中。 安装 as…...
蓝桥等考Python组别十七级003
第一部分:选择题 1、Python L17 (15分) 运行下面程序,输出的结果是( )。 def func(x, y): return (x + y) // 3 print(func(7, 5)) 2468正确答案:B 2、Python L17 (15</...
Redis概述和与SpringBoot的整合
Redis是一种高性能的键值对存储数据库,它支持多种数据结构,包括字符串、哈希、列表、集合和有序集合等。Redis具有快速、可靠、灵活和可扩展等特点,也被广泛应用于缓存、队列和排行榜等场景。 SpringBoot是一种基于Spring框架的快速开发脚手…...
Python 中的 round() 函数:实现精确的数值舍入操作
round(x, n) 函数用于对数值 x 进行舍入操作,并指定保留的小数位数为 n。它的工作原理如下: 如果 x 的小数位数小于等于 n,则直接返回 x 本身。例如,round(3.1415, 2) 将返回 3.14。 如果 x 的小数位数大于 n,则按照四…...
在springboot中如何开启Bean数据校验
①:添加JSR303规范坐标与Hibernate校验框架对应坐标 <dependency><groupId>javax.validation</groupId><artifactId>validation-api</artifactId> </dependency><dependency><groupId>org.hibernate.validator<…...
【C语言好题系列三】
文章目录 学习导航一. 选择题二. 编程题(力扣/牛客网)三. 总结 学习导航 一. 选择题 如下程序的运行结果是(D) char c[5]{a, b, \0, c, \0}; printf("%s", c);A: ‘a’ ‘b’ B: ab\0c\0 C: ab c D: ab 答案解析: 正…...
ElasticSearch搜索引擎:常用的存储mapping配置项 与 doc_values详细介绍
一、ES的数据存储结构: ES底层使用 Lucene 存储数据,Lucene 的索引包含以下部分: A Lucene index is made of several components: an inverted index, a bkd tree, a column store (doc values), a document store (stored fields) and te…...
[Spring]事务的传播机制
一、背景 Mysql在修改完数据后,默认会自动触发事务Commit提交。 而在我们服务的一个方法里,需要多次修改Mysql记录。 为了保证原子性,我们需要将Mysql设为手动提交,多次修改后再commit提交。 二、Spring事务 1、编程式事务管理…...
linux下,如何查看一个文件的哈希值md5以及sha264
在linux终端中,可能存在多个相似的文件,而哈希值可以唯一确定一个文件。文件的哈希值计算可以有以下两种方式,MD5和SHA256,现将两种方式罗列如下: 1、MD5 命令:$ md5sum FileName 一个文件的 MD5 是固定的…...
Java类加载过程
一、前言 我们都知道计算机的底层逻辑都是0和1的编码,当然除了现在所研究的量子计算除外。那么我们在计算机所做的一切操作,底层原理是不是都可以翻译到0和1呢。如果刨根问底的话,可以这么说,当然0和1的表示也属于逻辑门电路电的…...
人脸活体检测技术的应用,有效避免人脸识别容易被攻击的缺陷
随着软件算法和物理终端的进步,人脸识别现在越来越被广泛运用到生活的方方面面,已经成为了重要的身份验证手段,但同时也存在着自身的缺陷,目前常规人脸识别技术可以精准识别目标人像特征,并迅速返回比对结果࿰…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
