当前位置: 首页 > news >正文

494.目标和

在这里插入图片描述

1. 回溯算法

这题和之前做的那些排列、组合的回溯稍微有些不同,你不需要每次选数据时都是for遍历去选择,很明显这是顺序选择的
比如 数组[0,1],target=1;
在这里插入图片描述
递归数组,每个元素都 + 或者 - ,然后取最后结果为0的即可

class Solution {public int findTargetSumWays(int[] nums, int target) {find(0,nums,target);return count;}private void find(int begin,int[] nums,int target){// 如果减完了,结束if(begin == nums.length){if(target == 0){count++;}return;}target-=nums[begin];find(begin+1,nums,target);target+=nums[begin];target+=nums[begin];find(begin+1,nums,target);target-=nums[begin];   }private int count=0;
}

2. 动态规划

这其实可以抽象为0/1背包问题。
数组中的元素,要么是前面+,要么是前面-,问计算结果为target的方案有多少种。
计算结果为0,即我们把前面为+的元素放在一个集合A中,前面为-的元素放在一个集合B中,二者之差为target即可。
我们如果知道了集合A,那么集合B自然就是数组中剩余元素组成。

可以列个简单的数学公式,假设A集合元素的和为left,B元素和为right,数组总和为sum

left + right = sum;
left - right = target;

二者一相加可以得到 left=(sum+target)/2;
由于都是正整数,left如果不是正整数,说明无解,即没有这种方案。

思路成功转换为,背包容量为left,在数组中找出和刚好为left的方案,并记录方案的最大数。

  1. 确定dp[i][j]

即dp[i][j] :在数组中下标为0~i的元素中任选,和刚好为j的方案数量

  1. 确定递推公式
    如果第i个元素不选,那方案数量和dp[i-1][j]的一样
    dp[i][j] = dp[i-1][j]
    如果选了第i个元素,那方案就不仅仅从i-1个元素选出和为j的,从i-1个元素选出和为j-nums[i]的也可以,两种方案数相加。
    dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]]

  2. 如何初始化
    dp[0][0]=1 我可以都不选,那方案数就是1
    初始化第一行 dp[0][nums[0]]+=1;
    题目中提示给出nums[i]范围是可能为0,所以如果nums[0]=0,那就是dp[0][0]中都不选的方案中,再添加一种,选择元素0,那就是两个方案了!!!
    重点细节,卡了我一个上午!!!

  3. 确定遍历顺序
    先数组元素,再背包容量

  4. 模拟推导

class Solution {public int findTargetSumWays(int[] nums, int target) {if(nums.length == 1){return target == nums[0]?1:target == 0-nums[0]?1:0;}// 把集合分成前面放+的正集合和前面放-的负集合.正集合的和为left,负集合的和为right// left+right=sum left-right=target => left = (target+sum)/2// 即转换为问题---把背包容量为left的背包装满有多少种方案// 同时,如果left不为整数,说明不行,返回0// dp[i][j] 在下标0为~i的元素中,填满背包容量为j,有多少种方案// dp[i][j] = dp[i-1][j] 如果不装i// dp[i][j] = Math.max(dp[i-1][j-nums[i]],dp[i-1][j]) 如果装iint sum=0;for(int i:nums){sum += i;}if((target+sum)%2 != 0 ){return 0;}if(target > sum || target < -sum){return 0;}int num = (target+sum)/2;num = num < 0?-num:num;int[][] dp = new int[nums.length][num+1];// 当容量为0的时候,都不选就是一种方案for(int i=0;i<nums.length;i++){dp[i][0]=1;}// 遍历第一行,dp[0][nums[0]]+=1 因为可能第一行中nums[0]=0,此时dp[0][0]其实已经初始化为1了,但是dp[0][0]其实有两个方案的,一个是都不选,一个是选了0,这个细节决定了我们后续的遍历从第二行开始是否成功!!!if(nums[0]<num+1){dp[0][nums[0]]+=1;}for(int i=1;i<nums.length;i++){for(int j=0;j<num+1;j++){dp[i][j] = dp[i-1][j];if(j>=nums[i]){dp[i][j] = dp[i-1][j-nums[i]] + dp[i-1][j];   } }}return dp[nums.length-1][num];}
}

优化成一维的

class Solution {public int findTargetSumWays(int[] nums, int target) {if(nums.length == 1){return target == nums[0]?1:target == 0-nums[0]?1:0;}// 把集合分成前面放+的正集合和前面放-的负集合.正集合的和为left,负集合的和为right// left+right=sum left-right=target => left = (target+sum)/2// 即转换为问题---把背包容量为left的背包装满有多少种方案// 同时,如果left不为整数,说明不行,返回0// dp[i][j] 在下标0为~i的元素中,填满背包容量为j,有多少种方案// dp[i][j] = dp[i-1][j] 如果不装i// dp[i][j] = Math.max(dp[i-1][j-nums[i]],dp[i-1][j]) 如果装iint sum=0;for(int i:nums){sum += i;}if((target+sum)%2 != 0 ){return 0;}if(target > sum || target < -sum){return 0;}int num = (target+sum)/2;num = num < 0?-num:num;int[]dp = new int[num+1];// 当容量为0的时候,都不选就是一种方案dp[0]=1;// 遍历第一行if(nums[0]<num+1){dp[nums[0]]+=1;}for(int i=1;i<nums.length;i++){for(int j=num;j>=nums[i];j--){dp[j] += dp[j-nums[i]]; }}return dp[num];}
}

这道题很经典,建议过段时间重复刷

相关文章:

494.目标和

1. 回溯算法 这题和之前做的那些排列、组合的回溯稍微有些不同&#xff0c;你不需要每次选数据时都是for遍历去选择&#xff0c;很明显这是顺序选择的 比如 数组[0,1]&#xff0c;target1&#xff1b; 递归数组&#xff0c;每个元素都 或者 - &#xff0c;然后取最后结果为0…...

滑台模组的应用有哪些?

在自动化生产中&#xff0c;我们常常会看到滑台模组的身影&#xff0c;那么&#xff0c;滑台模组究竟在自动化生产设备中起着怎样的作用呢&#xff1f; 简单点说&#xff0c;滑台模组由滑块、滚珠丝杆、导轨、主体等其它传动零件组成的自动化晋级单元&#xff0c;经过各单元的组…...

CS224W课程学习笔记(四):node2vec算法原理与说明

引言 什么是图嵌入&#xff1f; 我想从上节的deepwalk中已经有一个十分完整的轮廓了&#xff0c;这里引出deepwalk论文中的一张很形象的图&#xff08;当然&#xff0c;上节的一些实战演练&#xff0c;也将这种嵌入关系进行了模拟与可视化&#xff0c;前文为&#xff1a;&…...

扩展lucas定理

前置知识&#xff1a; lucas定理中国剩余定理 介绍 当正整数n,mn,mn,m很大&#xff0c;且质数ppp较小的时候&#xff0c;要求CnmC_n^mCnm​对ppp取模后的值&#xff0c;可以用lucas定理。 但如果ppp不是质数&#xff0c;那该怎么办呢&#xff1f;如果mmm较小&#xff0c;则…...

医疗影像工具LEADTOOLS 入门教程: 从 PDF 中提取附件 - 控制台 C#

LEADTOOLS 是一个综合工具包的集合&#xff0c;用于将识别、文档、医疗、成像和多媒体技术整合到桌面、服务器、平板电脑、网络和移动解决方案中&#xff0c;是一项企业级文档自动化解决方案&#xff0c;有捕捉&#xff0c;OCR&#xff0c;OMR&#xff0c;表单识别和处理&#…...

【LVGL】学习笔记--(1)Keil中嵌入式系统移植LVGL

一 LVGL简介最近emwin用的比较烦躁&#xff0c;同时被LVGL酷炫的界面吸引到了&#xff0c;所以准备换用LVGL试试水。LVGL(轻量级和通用图形库)是一个免费和开源的图形库&#xff0c;它提供了创建嵌入式GUI所需的一切&#xff0c;具有易于使用的图形元素&#xff0c;美丽的视觉效…...

Transformer学习笔记

Transformer学习笔记1. 参考2. 模型图3.encoder部分3.1 Positional Encoding3.2 Muti-Head Attention3.3 ADD--残差连接3.4 Norm标准化3.5 单个Transformer Encoder流程图4.decoder部分4.1 mask Muti-Head Attention4.2 Muti-Head Attention5 多个Transformer Encoder和多个Tra…...

vue-cli引入wangEditor、Element,封装可上传附件的富文本编辑器组件(附源代码直接应用,菜单可调整)

关于Element安装引入&#xff0c;请参考我的另一篇文章&#xff1a;vue-cli引入Element Plus&#xff08;element-ui&#xff09;&#xff0c;修改主题变量&#xff0c;定义全局样式_shawxlee的博客-CSDN博客_chalk variables 1、安装wangeditor npm i wangeditor --savewangE…...

移动办公时代,数智化平台如何赋能企业管理升级?

在传统的办公模式下&#xff0c;企业组织办公不仅时效低&#xff0c;周期长、成本高&#xff0c;且各办公系统相互独立。随着社会经济的发展&#xff0c;人们的工作生活变得多样化&#xff0c;对于办公的需求也越来越多&#xff0c;存在明显弊端的传统办公模式已不能满足企业对…...

2023“拼夕夕”为什么可以凭借简单的拼团做这么大?

2023“拼夕夕”为什么可以凭借简单的拼团做这么大&#xff1f; 2023-02-24 梦龙 大家好&#xff0c;我是你们熟悉而又陌生的好朋友梦龙&#xff0c;一个创业期的年轻人 大家都知道&#xff0c;拼夕夕背后的商业模式是拼团&#xff0c;但是大家知道为什么简单的拼团可以让拼夕…...

sqlmap工具

sqlmap Sqlmap是一个开源的渗透测试工具&#xff0c;可以用来自动化的检测&#xff0c;利用SQL注入漏洞&#xff0c;获取数据库服务器的权限。目前支持的数据库有MySQL、Oracle、PostgreSQL、Microsoft SQL Server、Microsoft Access等大多数据库 Sqlmap采用了以下5种独特的SQ…...

高/低压供配电系统设计——安科瑞变电站电力监控系统的应用

摘 要&#xff1a;在电力系统的运行过程中&#xff0c;变电站作为整个电力系统的核心&#xff0c;在保证电力系统可靠的运行方面起着至关重要的作用&#xff0c;基于此需对变电站监控系统的特点进行分析&#xff0c;结合变电站监控系统的功能需求&#xff0c;对变电站电力监控系…...

Tapdata 和 Databend 数仓数据同步实战

作者&#xff1a;韩山杰https://github.com/hantmacDatabend Cloud 研发工程师基础架构在云计算时代也发生着翻天地覆的变化&#xff0c;对于业务的支持变成了如何能利用好云资源实现降本增效&#xff0c;同时更好的支撑业务也成为新时代技术人员的挑战。 本篇文章通过&#xf…...

单核CPU, 1G内存,也能做JVM调优吗?

最近&#xff0c;笔者的技术群里有人问了一个有趣的技术话题&#xff1a;单核CPU, 1G内存的超低配机器&#xff0c;怎么做JVM调优&#xff1f;这实际上是两个问题。单核CPU的超低配机器&#xff0c;怎么充分利用CPU&#xff1f;单核CPU, 1G内存的超低配机器&#xff0c;怎么做J…...

《计算机应用研究》投稿经历和时间节点

记录四川计算机研究院《计算机应用研究》期刊投稿经历和时间节点。 日期状态周期2022.11.09上传稿件当天显示编辑部已接收稿件&#xff0c;开始初审2022.11.09 – 2022.11.15初审6天2022.11.15 – 2022.12.21外审36天2022.12.21收到退修意见&#xff08;邮件形式&#xff09;编…...

mars3d获取视窗的范围

期望效果 :1.我现在想获取到当前视窗的地图范围&#xff0c;请问有什么⽅法可以拿到吗 2.⽐如当前视窗地图范围的边界点&#xff0c;每个边界点的经纬度 回复&#xff1a;1.mars3d的API⽂档中有相关的⽅法 2.具体使⽤可以参考⽂档地址&#xff1a;http://mars3d.cn/api/Map.htm…...

《高性能MySQL》读书笔记(上)

目录 MySQL的架构 MySQL中的锁 MySQL中的事务 事务特性 隔离级别 事务日志 多版本并发控制MVCC 影响MySQL性能的物理因素 InnoDB缓冲池 MySQL常用的数据类型以及优化 字符串类型 日期和时间类型 数据标识符 MySQL的架构 默认情况下&#xff0c;每个客户端连接都…...

05-代理模式

代理模式 代理模式使用代理对象来代替真实对象的访问&#xff0c;在不修改原有对象的前提下&#xff0c;提供额外的操作&#xff0c;扩展目标对象的功能。代理模式分为静态代理和动态代理。 静态代理 手动为目标对象中的方法进行增强&#xff0c;通过实现相同接口重写方法进…...

RocketMQ源码分析之消费队列、Index索引文件存储结构与存储机制-上篇

RocketMQ 存储基础回顾&#xff1a; 源码分析RocketMQ之CommitLog消息存储机制 本文主要从源码的角度分析 Rocketmq 消费队列 ConsumeQueue 物理文件的构建与存储结构&#xff0c;同时分析 RocketMQ 索引文件IndexFile 文件的存储原理、存储格式以及检索方式。RocketMQ 的存储…...

基于Java的浏览器的设计与实现毕业设计

技术&#xff1a;Java等摘要&#xff1a;当今世界是一个以计算机网络为核心的信息时代&#xff0c;互联网为人们快速获取、发布和传递信息提供了便捷&#xff0c;而浏览器作为互联网上查找信息的重要工具&#xff0c;给人们提供了巨大而又宝贵的信息财富&#xff0c;受到了大家…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中&#xff0c;经常会遇到端口被占用的问题&#xff08;如 8080、3306 等常用端口&#xff09;。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口&#xff0c;帮助你高效解决此类问题。​ 一、准…...