机器学习基础之《回归与聚类算法(2)—欠拟合与过拟合》
一、背景
1、上一篇说正规方程的时候,实际情况中使用很少,主要原因它不能解决过拟合。
2、训练集上表现的好,测试集上表现不好—过拟合
二、欠拟合和过拟合
1、欠拟合
训练集:有3个训练集,告诉机器都是天鹅
机器学到了2个特征:有翅膀、嘴巴长
缺点:学习到的特征太少了
2、过拟合
之前特征太少了,那就多学点
缺点;学习到的特征太多了
3、分析
第一种情况:因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。
第二种情况:机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。
三、定义
1、欠拟合
一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)
2、过拟合
一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
3、用图来表示这样一个过程
训练误差这一条线:随着不断地进行训练,损失值越来越少,模型复杂度越来越多
测试误差这一条线:一开始是误差随着模型复杂度越来越小,但是到一定程度之后(临界值),随着模型复杂度进一步增加,在测试集上误差会变大
在临界值左边的,欠拟合(训练集表现不好,测试集表现也不好)
在临界值右边的,过拟合(训练集表现好,测试集表现不好)
四、解决办法
1、欠拟合解决办法
原因:学习到数据的特征过少
解决办法:增加数据的特征数量
2、过拟合解决办法
原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
解决办法:正则化
3、在这里针对回归,我们选择了正则化。但是对于其他机器学习算法如分类算法来说也会出现这样的问题,除了一些算法本身作用之外(决策树、神经网络),我们更多的也是去自己做特征选择,包括之前说的删除、合并一些特征
4、在学习的时候,数据提供的特征有些影响模型复杂度或者这个特征的数据点异常较多,所以算法在学习的时候尽量减少这个特征的影响(甚至删除某个特征的影响),这就是正则化
5、注意:调整时候,算法并不知道某个特征影响,而是去调整参数得出优化的结果
五、正则化
1、L2正则化(更常用)
作用:可以使得模型中,模型参数W(权重系数),尽可能的接近于0,削弱某些特征的影响
优点:越小的参数,说明模型越简单,越简单的模型则越不容易产生过拟合现象
别名:Ridge回归(岭回归)
加入L2正则化后的损失函数:
损失函数 + λ * 惩罚项
(1)用【预测值】-【真实值】,然后求平方和,然后除以2m
(2)惩罚项是权重值平方,然后加在一起。第一个权重的平方加到最后一个权重的平方
(3)λ是惩罚的步长
(4)n为样本数,m为特征数
2、L1正则化
作用:可以使得其中一些W的值直接为0,删除这个特征的影响
别名:LASSO回归
加入L1正则化后的损失函数:
损失函数 + λ * 惩罚项
(1)惩罚项是W的绝对值加在一起
相关文章:
机器学习基础之《回归与聚类算法(2)—欠拟合与过拟合》
一、背景 1、上一篇说正规方程的时候,实际情况中使用很少,主要原因它不能解决过拟合。 2、训练集上表现的好,测试集上表现不好—过拟合 二、欠拟合和过拟合 1、欠拟合 训练集:有3个训练集,告诉机器都是天鹅 机器学…...
flutter dio 请求封装(空安全)
一、添加依赖 dio: ^5.3.2二、请求封装 class HttpHelper {static Dio? mDio;static BaseOptions? options;static HttpHelper? httpHelper;CancelToken cancelToken CancelToken();static const String GET get;static const String POST post;static const String PU…...
chatgpt GPT-4V是如何实现语音对话的
直接上代码 https://chat.openai.com/voice/get_token 1. 请求内容 Request:GET /voice/get_token HTTP/1.1 Host: ios.chat.openai.com Content-Type: application/json Cookie: _puiduser***Fc9T:16962276****Nph%2Fb**SU%3D; _uasid"Z0FBQUF***nPT0"; __cf_bmBUg…...
C++项目-求水仙花数
求水仙花数 #include <iostream> using namespace std;int main() {int n 100;do {int a 0;int b 0;int c 0;a n % 10; //个位b n / 10 % 10; //十位c n / 100 % 10; //百位if (a * a * a b * b * b c * c * c n) {cout << n << endl;}…...
从零开始基于LLM构建智能问答系统的方案
本文首发于博客 LLM应用开发实践 一个完整的基于 LLM 的端到端问答系统,应该包括用户输入检验、问题分流、模型响应、回答质量评估、Prompt 迭代、回归测试,随着规模增大,围绕 Prompt 的版本管理、自动化测试和安全防护也是重要的话题&#x…...
Android---Synchronized 和 ReentrantLock
Synchronized 基本使用 1. 修饰实例方法 public class SynchronizedMethods{private int sum 0;public synchronized void calculate(){sum sum 1;} } 这种情况下的锁对象是当前实例对象,因此只有同一个实例对象调用此方法才会产生互斥效果;不同的…...
【解题报告】牛客挑战赛70 maimai
题目链接 这个挑战赛的 F F F是我出的,最后 zhoukangyang 爆标了。。。orzorz 记所有有颜色的边的属性集合 S S S 。 首先在外层容斥,枚举 S ∈ [ 0 , 2 w ) S\in [0,2^w) S∈[0,2w),计算被覆盖的的边中不包含 S S S 中属性,…...
算启新程 智享未来 | 紫光展锐携手中国移动共创数智未来
10月11日-13日,2023年中国移动全球合作伙伴大会在广州举行,此次大会以“算启新程 智享未来”为主题,与合作伙伴一起共商融合创新,共创数智未来。作为中国移动每年规模最大、最具影响力的盛会,吸引了数百家世界500强企业…...
thinkphp5.1 获取缓存cache(‘cache_name‘)特别慢,php 7.0 unserialize 特别慢
thinkphp5.1 获取缓存cache(‘cache_name’)特别慢,php 7.0 unserialize 特别慢 场景: 项目中大量使用了缓存,本地运行非常快,二三百毫秒,部署到服务器后 一个表格请求就七八秒,最初猜想是数据库查询慢&am…...
【Linux】UNIX 术语中,换页与交换的区别和Linux 术语中,换页与交换的区别?
UNIX换页和交换的区别 在UNIX中,换页(Paging)是一种内存管理技术,用于在程序运行时动态地将其代码和数据从磁盘加载到内存中。当程序需要访问的页面不在内存中时,就会发生页错误(page error)&a…...
零基础学python之集合
文章目录 集合1、创建集合2、集合常见操作方法2、1 增加数据2、2 删除数据2、3 查找数据 3、总结 集合 目标 创建集合集合数据的特点集合的常见操作 1、创建集合 创建集合使用{}或set(), 但是如果要创建空集合只能使用set(),因为{}用来创建空字典。 …...
PromptScript:轻量级 DSL 脚本,加速多样化的 LLM 测试与验证
TL;DR 版本 PromptScript 是一个轻量级的 Prompt 调试用的 DSL (Yaml)脚本,以用于快速使用、构建 Prompt。 PromptScript 文档:https://framework.unitmesh.cc/prompt-script Why PromptScript ? 几个月前&…...
强化学习(Reinforcement Learning)与策略梯度(Policy Gradient)
写在前面:本篇博文的内容来自李宏毅机器学习课程与自己的理解,同时还参考了一些其他博客(懒得放链接)。博文的内容主要用于自己学习与记录。 1 强化学习的基本框架 强化学习(Reinforcement Learning, RL)主要由智能体(Agent/Actor)、环境(Environment)、…...
JUC之ForkJoin并行处理框架
ForkJoin并行处理框架 Fork/Join 它可以将一个大的任务拆分成多个子任务进行并行处理,最后将子任务结果合并成最后的计算结果,并进行输出。 类似于mapreduce 其实,在Java 8中引入的并行流计算,内部就是采用的ForkJoinPool来实现…...
【牛客面试必刷TOP101】Day8.BM33 二叉树的镜像和BM36 判断是不是平衡二叉树
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:牛客面试必刷TOP101 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!&…...
CSS padding(填充)
CSS padding(填充)是一个简写属性,定义元素边框与元素内容之间的空间,即上下左右的内边距。 padding(填充) 当元素的 padding(填充)内边距被清除时,所释放的区域将会受到…...
C语言达到什么水平才能从事单片机工作
C语言达到什么水平才能从事单片机工作 从事单片机工作需要具备一定的C语言编程水平。以下是几个关键要点:基本C语言知识: 掌握C语言的基本语法、数据类型、运算符、流控制语句和函数等基本概念。最近很多小伙伴找我,说想要一些C语言学习资料&…...
Java架构师理解SAAS和多租户
目录 1 云服务的三种模式1.1 IaaS(基础设施即服务)1.2 PaaS(平台即服务)1.3 SaaS(软件即服务)1.4 区别与联系2 SaaS的概述2.1 Saas详解2.2 应用领域与行业前景2.3 Saas与传统软件对比3 多租户SaaS平台的数据库方案3.1 多租户是什么3.2 需求分析3.3 多租户的数据库方案分析…...
关于Java线程池相关面试题
【更多面试资料请加微信号:suns45】 https://flowus.cn/share/f6cd2cbe-627a-435f-a6e5-1395333f92e8 【FlowUs 息流】📣suns-Java资料 访问密码:【请加微信号:suns45】 ————线程相关的面试题———— 0:创建线…...
ExcelBDD Python指南
在Python里面支持BDD Excel BDD Tool Specification By ExcelBDD Method This tool is to get BDD test data from an excel file, its requirement specification is below The Essential of this approach is obtaining multiple sets of test data, so when combined with…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
