当前位置: 首页 > news >正文

ExcelBDD Python指南

在Python里面支持BDD

Excel BDD Tool Specification By ExcelBDD Method

This tool is to get BDD test data from an excel file, its requirement specification is below

The Essential of this approach is obtaining multiple sets of test data, so when combined with Excel's Sheet, the key parameters are:

  1. ExcelFileName, required, which excel file is used.
  2. SheetName, optional, which Sheet the requirement writer writes in, if not specified, 1st sheet is chosen. An Excel file supports multiple Sheets, so an Excel is sufficient to support a wide range, such as Epic, Release, or a module.
  3. HeaderMatcher, filter the header row by this matcher, if matched, this set will be collected in.
  4. HeaderUnmatcher, filter the header row by this matcher, if matched, this set will be excluded.

Once the header row and parameter name column are determined by 'Parameter Name' grid automatically, the data area is determined, such as the green area in the table above. The gray area of the table above is the story step description, which is the general requirements step.

Install ExcelBDD Python Edition

pip install excelbdd

API

behavior.get_example_list

get_example_list(excelFile, sheetName = None, headerMatcher = None, headerUnmatcher = None)

  1. excelFile: excel file path and name, relative or absolute
  2. sheetName: sheet name, optional, default is the first sheet in excel file
  3. HeaderMatcher: filter the header row by this matcher, if matched, this set will be collected in. optional, default is to select all.
  4. HeaderUnmatcher: filter the header row by this matcher, if matched, this set will be excluded. optional, default is to exclude none.

behavior.get_example_table

get_example_table(excelFile,sheetName = None,headerRow = 1,startColumn = 'A')

  1. excelFile: excel file path and name, relative or absolute
  2. sheetName: sheet name, optional, default is the first sheet in excel file
  3. headerRow: the number of header row, optional, default is 1
  4. startColumn: the char of first data area, optional, default is column A in sheet

Simple example code

The Famouse FizzBuzz kata is described in excelbdd format, as below.

import pytest
from excelbdd.behavior import get_example_list
import FizzBuzzexcelBDDFile = "path of excel file" 
@pytest.mark.parametrize("HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4",get_example_list(excelBDDFile,"FizzBuzz"))
def test_FizzBuzz(HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4):assert FizzBuzz.handle(Number1) == Output1assert FizzBuzz.handle(Number2) == Output2assert FizzBuzz.handle(Number3) == Output3assert FizzBuzz.handle(Number4) == Output4

 Input vs Expect + Test Result Format - SBT - Specification By Testcase

 

testcase example is below, which uses headerMatcher to filter the data

@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, \ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, \ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, \ParamName4TestResult",get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, ParamName4TestResult):print(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, ParamName4TestResult)# add test data are loaded into the above parameters, add test code below

 ExcelBDD can detect 3 parameter-header patterns automatically, the last one is below.

Input vs Expected 

 

The demo code is below

@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected,  \ParamName2, ParamName2Expected, ParamName3, \ParamName3Expected, ParamName4, ParamName4Expected"get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected,  ParamName2, ParamName2Expected, ParamName3, ParamName3Expected, ParamName4, ParamName4Expected):print(HeaderName, ParamName1, ParamName1Expected, ParamName2, ParamName2Expected,  ParamName3, ParamName3Expected, ParamName4, ParamName4Expected)# add test data are loaded into the above parameters, add test code below

Get Table

The test data are organized in normal table, as below.

 the below code show how to fetch the test data into testcase

from excelbdd.behavior import get_example_table@pytest.mark.parametrize("Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08",get_example_table(tableFile, "DataTable4"))
def test_get_example_tableB(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08):print(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08)   # add test data are loaded into the above parameters, add test code below

ExcelBDD Python指南线上版维护在ExcelBDD Python Guideline

ExcelBDD开源项目位于 ExcelBDD Homepageicon-default.png?t=N7T8https://dev.azure.com/simplopen/ExcelBDD

 

相关文章:

ExcelBDD Python指南

在Python里面支持BDD Excel BDD Tool Specification By ExcelBDD Method This tool is to get BDD test data from an excel file, its requirement specification is below The Essential of this approach is obtaining multiple sets of test data, so when combined with…...

基于深度学习的驾驶员疲劳监测系统的设计与实现

点击以下链接获取源码: https://download.csdn.net/download/qq_64505944/88421622?spm1001.2014.3001.5503 基于深度学习的驾驶员疲劳监测系统的设计与实现 1 绪论 在21世纪,各国的经济飞速发展,人民越来越富裕,道路上的汽车也逐…...

B树、B+树详解

B树 前言   首先,为什么要总结B树、B树的知识呢?最近在学习数据库索引调优相关知识,数据库系统普遍采用B-/Tree作为索引结构(例如mysql的InnoDB引擎使用的B树),理解不透彻B树,则无法理解数据…...

使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题

目录 问题描述及配置网上资料查找1.tqdm问题2.dataloader问题3.model(input)写法问题4.环境变量问题 我的卡死问题解决方法 问题描述及配置 在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错 [E Process…...

IDEA 修改插件安装位置

不说假话,一定要看到最后,不然你以为我为什么要自己总结!!! IDEA 修改插件安装位置 前言步骤 前言 IDEA 默认的配置文件均安装在C盘,使用时间长会生成很多文件,这些文件会占用挤兑C盘空间&…...

牛客网SQL160

国庆期间每类视频点赞量和转发量_牛客题霸_牛客网 select * from ( select tag,dt, sum(单日点赞量)over(partition by tag order by dt rows between 6 preceding and 0 following), max(单日转发量)over(partition by tag order by dt rows between 6 preceding and 0 follo…...

HDFS Java API 操作

文章目录 HDFS Java API操作零、启动hadoop一、HDFS常见类接口与方法1、hdfs 常见类与接口2、FileSystem 的常用方法 二、Java 创建Hadoop项目1、创建文件夹2、打开Java IDEA1) 新建项目2) 选择Maven 三、配置环境1、添加相关依赖2、创建日志属性文件 四、Java API操作1、在HDF…...

论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】

文章目录 论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】背景:数据分析师工作范围基于GPT-4的端到端数据分析框架将GPT-4作为数据分析师的框架的流程图 实验分析评估指标表1:GPT-4性能表现表2&…...

【数据结构】:二叉树与堆排序的实现

1.树概念及结构(了解) 1.1树的概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的有一个特殊的结点&#…...

纯css手写switch

CSS 手写switch 纯css手写switchcss变量 纯css手写switch 思路: switch需要的元素有:开关背景、开关按钮。点击按钮后,背景色变化,按钮颜色变化,呈现开关打开状态。 利用typecheckbox,来实现switch效果(修…...

PyTorch 深度学习之处理多维特征的输入Multiple Dimension Input(六)

1.Multiple Dimension Logistic Regression Model 1.1 Mini-Batch (N samples) 8D->1D 8D->2D 8D->6D 1.2 Neural Network 学习能力太好也不行(学习到的是数据集中的噪声),最好的是要泛化能力,超参数尝试 Example, Arti…...

LeetCode【438】找到字符串中所有字母异位词

题目&#xff1a; 注意&#xff1a;下面代码勉强通过&#xff0c;每次都对窗口内字符排序。然后比较字符串。 代码&#xff1a; public List<Integer> findAnagrams(String s, String p) {int start 0, end p.length() - 1;List<Integer> result new ArrayL…...

关于LEFT JOIN的一次理解

先看一段例子&#xff1a; SELECTproduct_half_spu.id AS halfSpuId,product_half_spu.half_spu_code,product_half_spu.half_spu_name,COUNT( product_sku.id ) AS skuCount,product_half_spu.create_on,product_half_spu.create_by,product_half_spu.upload_pic_date,produc…...

各报文段格式集合

数据链路层-- MAC帧 前导码8B&#xff1a;数据链路层将封装好的MAC帧交付给物理层进行发送&#xff0c;物理层在发送MAC帧前&#xff0c;还要在前面添加8字节的前导码&#xff08;分为7字节的前同步码1字节的帧开始定界符&#xff09;MAC地址长度6B数据长度46&#xff5e;1500B…...

【算法-动态规划】最长公共子序列

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...

区块链游戏的开发流程

链游&#xff08;Blockchain Games&#xff09;的开发流程与传统游戏开发有许多相似之处&#xff0c;但它涉及到区块链技术的集成和智能合约的开发。以下是链游的一般开发流程&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&…...

目标检测网络系列——YOLO V2

文章目录 YOLO9000better,更准batch Normalization高分辨率的训练使用anchor锚框尺寸的选择——聚类锚框集成改进——直接预测bounding box细粒度的特征图——passthrough layer多尺度训练数据集比对实验VOC 2007VOC 2012COCOFaster,更快网络模型——Darknet19训练方法Strong…...

15. Java反射和注解

Java —— 反射和注解 1. 反射2. 注解 1. 反射 动态语言&#xff1a;变量的类型和属性可以在运行时动态确定&#xff0c;而不需要在编译时指定 常见动态语言&#xff1a;Python&#xff0c;JavaScript&#xff0c;Ruby&#xff0c;PHP&#xff0c;Perl&#xff1b;常见静态语言…...

pdf处理工具 Enfocus PitStop Pro 2022 中文 for mac

Enfocus PitStop Pro 2022是一款专业的PDF预检和编辑软件&#xff0c;旨在帮助用户提高生产效率、确保印刷品质量并减少错误。以下是该软件的一些特色功能&#xff1a; PDF预检。PitStop Pro可以自动检测和修复常见的PDF文件问题&#xff0c;如缺失字体、图像分辨率低、颜色空…...

微信小程序入门开发教程

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《微信小程序开发实战》。&#x1f3af;&#x1f3a…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...