当前位置: 首页 > news >正文

使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题

目录

  • 问题描述及配置
  • 网上资料查找
    • 1.tqdm问题
    • 2.dataloader问题
    • 3.model(input)写法问题
    • 4.环境变量问题
  • 我的卡死问题解决方法

问题描述及配置

在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错

[E ProcessGroupNCCL.cpp:828] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(OpType=BROADCAST, Timeout(ms)=1800000) ran for 1808499 milliseconds before timing out.
[E ProcessGroupNCCL.cpp:587] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=1800000) ran for 1808493 milliseconds before timing out.

而且,程序能正常运行几十个epoch,然后在运行中间卡死。卡死的位置永远是出现在测试集进行eval结束之后,而不是出现在对训练集的训练过程中。

例如,我每40个epoch进行一次测试(eval),那么卡死经常会出现在第80个epoch,或者第120个epoch的位置,有时候还会出现在第400个epoch。

在卡死的时候,每个GPU使用率达到100%(一条100%的直线),但是CPU使用率降到0%(一条0%的直线)

完整报错如下图所示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

网上资料查找

我查阅网上资料,有很多种方法解决如下问题,虽然网上所查阅到的方法都没有解决我的问题,但是在这里都记录一下,或许对大家有用:

1.tqdm问题

有说在训练过程中,如果使用了tqdm打印进度条会出现卡死的问题,需要将所有tqdm代码都删除

2.dataloader问题

dataloader分为两种问题:

  1. 有的博客说使用pytorch中的dataloader对dataset进行封装的时候,在多GPU训练的情况下会卡死,所以需要去除dataloader的封装,直接使用dataset进行训练(但是我认为这种说法不可靠
  2. 有的博客说使用dataloader的时候,如果设置了drop_last=False,或者是设置了shuffle=True,会导致开始(我认为这种说法也不可靠

3.model(input)写法问题

在给予模型输入,进行正向传播的时候,我们通常写法是

output=model(input)

一些说法说这种写法在多GPU训练的时候,在模型进行eval的时候需要改一下:

output=model.module(input)

这样即可解决问题

4.环境变量问题

环境变量问题应该是最主要的一个解决方案,即更改环境变量。更改环境变量有很多方法,这里说一下在bash中临时更改环境变量的方法:

即在bash中输入

export NCCL_P2P_LEVEL=NVL

或者输入

export NCCL_P2P_DISABLE=1

然后再运行多GPU训练的代码

我的卡死问题解决方法

我经过长时间调试,发现我的问题出在这里:

我每次在eval的时候,都会判断这次测试集的loss是否和以往的相比是否是最小的,如果是最小的,那么获取这一个epoch的模型参数,问题就出现在获取模型参数这里(红框画出来的)
在这里插入图片描述
或者如果不加self.accelerator.wait_for_everyone()也是一样的,会出现同样的问题
在这里插入图片描述
卡死就在获取模型参数的部分,这里就是“有概率”出现卡死,因为运行一次可能没问题,但是如果我每40个epoch就运行一次eval,那么在第80个,第120个epoch就会卡死。

我猜测这是由于accelerate是通过多进程来控制多个GPU进行训练的,这里多个进程都去获取模型参数,所以才会出现卡死的情况。

因此,解决方法如下

在这里插入图片描述

在判断条件中要加上判断是否在主进程中,然后去掉self.accelerator.wait_for_everyone()

这样就解决了卡死的问题。

相关文章:

使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题

目录 问题描述及配置网上资料查找1.tqdm问题2.dataloader问题3.model(input)写法问题4.环境变量问题 我的卡死问题解决方法 问题描述及配置 在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错 [E Process…...

IDEA 修改插件安装位置

不说假话,一定要看到最后,不然你以为我为什么要自己总结!!! IDEA 修改插件安装位置 前言步骤 前言 IDEA 默认的配置文件均安装在C盘,使用时间长会生成很多文件,这些文件会占用挤兑C盘空间&…...

牛客网SQL160

国庆期间每类视频点赞量和转发量_牛客题霸_牛客网 select * from ( select tag,dt, sum(单日点赞量)over(partition by tag order by dt rows between 6 preceding and 0 following), max(单日转发量)over(partition by tag order by dt rows between 6 preceding and 0 follo…...

HDFS Java API 操作

文章目录 HDFS Java API操作零、启动hadoop一、HDFS常见类接口与方法1、hdfs 常见类与接口2、FileSystem 的常用方法 二、Java 创建Hadoop项目1、创建文件夹2、打开Java IDEA1) 新建项目2) 选择Maven 三、配置环境1、添加相关依赖2、创建日志属性文件 四、Java API操作1、在HDF…...

论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】

文章目录 论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】背景:数据分析师工作范围基于GPT-4的端到端数据分析框架将GPT-4作为数据分析师的框架的流程图 实验分析评估指标表1:GPT-4性能表现表2&…...

【数据结构】:二叉树与堆排序的实现

1.树概念及结构(了解) 1.1树的概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的有一个特殊的结点&#…...

纯css手写switch

CSS 手写switch 纯css手写switchcss变量 纯css手写switch 思路: switch需要的元素有:开关背景、开关按钮。点击按钮后,背景色变化,按钮颜色变化,呈现开关打开状态。 利用typecheckbox,来实现switch效果(修…...

PyTorch 深度学习之处理多维特征的输入Multiple Dimension Input(六)

1.Multiple Dimension Logistic Regression Model 1.1 Mini-Batch (N samples) 8D->1D 8D->2D 8D->6D 1.2 Neural Network 学习能力太好也不行(学习到的是数据集中的噪声),最好的是要泛化能力,超参数尝试 Example, Arti…...

LeetCode【438】找到字符串中所有字母异位词

题目&#xff1a; 注意&#xff1a;下面代码勉强通过&#xff0c;每次都对窗口内字符排序。然后比较字符串。 代码&#xff1a; public List<Integer> findAnagrams(String s, String p) {int start 0, end p.length() - 1;List<Integer> result new ArrayL…...

关于LEFT JOIN的一次理解

先看一段例子&#xff1a; SELECTproduct_half_spu.id AS halfSpuId,product_half_spu.half_spu_code,product_half_spu.half_spu_name,COUNT( product_sku.id ) AS skuCount,product_half_spu.create_on,product_half_spu.create_by,product_half_spu.upload_pic_date,produc…...

各报文段格式集合

数据链路层-- MAC帧 前导码8B&#xff1a;数据链路层将封装好的MAC帧交付给物理层进行发送&#xff0c;物理层在发送MAC帧前&#xff0c;还要在前面添加8字节的前导码&#xff08;分为7字节的前同步码1字节的帧开始定界符&#xff09;MAC地址长度6B数据长度46&#xff5e;1500B…...

【算法-动态规划】最长公共子序列

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...

区块链游戏的开发流程

链游&#xff08;Blockchain Games&#xff09;的开发流程与传统游戏开发有许多相似之处&#xff0c;但它涉及到区块链技术的集成和智能合约的开发。以下是链游的一般开发流程&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&…...

目标检测网络系列——YOLO V2

文章目录 YOLO9000better,更准batch Normalization高分辨率的训练使用anchor锚框尺寸的选择——聚类锚框集成改进——直接预测bounding box细粒度的特征图——passthrough layer多尺度训练数据集比对实验VOC 2007VOC 2012COCOFaster,更快网络模型——Darknet19训练方法Strong…...

15. Java反射和注解

Java —— 反射和注解 1. 反射2. 注解 1. 反射 动态语言&#xff1a;变量的类型和属性可以在运行时动态确定&#xff0c;而不需要在编译时指定 常见动态语言&#xff1a;Python&#xff0c;JavaScript&#xff0c;Ruby&#xff0c;PHP&#xff0c;Perl&#xff1b;常见静态语言…...

pdf处理工具 Enfocus PitStop Pro 2022 中文 for mac

Enfocus PitStop Pro 2022是一款专业的PDF预检和编辑软件&#xff0c;旨在帮助用户提高生产效率、确保印刷品质量并减少错误。以下是该软件的一些特色功能&#xff1a; PDF预检。PitStop Pro可以自动检测和修复常见的PDF文件问题&#xff0c;如缺失字体、图像分辨率低、颜色空…...

微信小程序入门开发教程

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《微信小程序开发实战》。&#x1f3af;&#x1f3a…...

php函数

1. strstr() 返回a在b中的第一个位置 2.substr() 截取字符串 3.PHP字符串函数parse_str(将字符串解析成多个变量)-CSDN博客 4.explode() 字符串分割为数组 5.trim&#xff08;&#xff09; 1.去除字符串两边的 空白字符 2.去除指定字符 6.extract()函数从数组里…...

3.3 封装性

思维导图&#xff1a; 3.3.1 为什么要封装 ### 3.3.1 为什么要封装 **封装**&#xff0c;在Java的面向对象编程中&#xff0c;是一个核心的思想。它主要是为了保护对象的状态不被外部随意修改&#xff0c;确保数据的完整性和安全性。 #### **核心思想&#xff1a;** - 保护…...

Redis魔法:点燃分布式锁的奇妙实现

分布式锁是一种用于在分布式系统中控制对共享资源的访问的锁。它与传统的单机锁不同&#xff0c;因为它需要在多个节点之间协调以确保互斥访问。 本文将介绍什么是分布式锁&#xff0c;以及使用Redis实现分布式锁的几种方案。 一、前言 了解分布式锁之前&#xff0c;需要先了…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...