人脸考勤机项目
文章内容如下:
1)项目简介
2)开发环境和使用的技术知识
3)功能实现
4)项目源码
一。项目简介
此项目是基于HOG和Dlib开发的一套实时无感考勤系统。首先是待考勤人员的个人信息录入。然后在过道或者入口处装置人脸考勤机,当有人经过时,摄像头抓取人脸并上传服务器,对抓取到的人脸进行人脸识别,判断此人身份,若此人在信息比对库中且第一次考勤,则考勤成功,并显示考勤人员姓名与比对距离,如非第一次考勤,并在一定时间隔外则更新考勤 。
二。开发环境和使用的技术知识
开发环境:Python,Opencv
技术知识:HOG+Dlib技术、Opencv视频读取-缩放-翻转-写入技术
三。功能实现
1. 人脸注册:将人脸特征存进feaure.csv
2. 人脸识别:将检测的人脸特征与feaure.csv人脸特征作比较,如果比中把考勤记录写入attendance.csv
1. 人脸注册:将人脸特征存进feaure.csv
①调取视频流,能显示人脸画面
cap = cv2.VideoCapture(0)"""调取摄像头"""while True:ret,frame = cap.read()frame = cv2.flip(frame,1)"""y轴镜像"""cv2.imshow('Face attendance',frame)"""展示每一帧图片"""if cv2.waitKey(10) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows()
② 步骤如下:
第1步:启动HOG人脸检测器,读取人脸上下左右坐标,绘制人脸方框;
hog_face_detector = dlib.get_frontal_face_detector()"""启动hog人脸检测器"""
detections = hog_face_detector(frame,1)"""获取人脸参数,缩放因子为1"""
for face in detections:l,t,r,b = face.left(),face.top(),face.right(),face.bottom()"""获取人脸左,上,右,下的坐标"""
cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)"""绘制人脸框"""
第2步: 启动人脸关键点检测器获取人脸68个关键点,再转为特征描述符;
shape_detector = dlib.shape_predictor('./1/shape_predictor_68_face_landmarks.dat')"""启动人脸关键点检测器"""
detections = hog_face_detector(frame,1)"""获取人脸参数,缩放因子为1"""
for face in detections:points = shape_detector(frame,face)"""获取人脸68关键点"""
for point in points.parts():cv2.circle(frame,(point.x,point.y),2,(0,255,0),-10)"""绘制68关键点"""
face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)"""获取(转为)特征描述符"""
face_descriptor = [f for f in face_descriptor]"""为方便转换成列表存进feaure.csv"""
①②组合在一起复合代码如下:
def faceRegister(label_id=1,name='Jie Wang',count=3,interval=3):
#1)-检测人脸#准备工作hog_face_detector = dlib.get_frontal_face_detector()#①启动hog人脸检测器shape_detector = dlib.shape_predictor('./1/shape_predictor_68_face_landmarks.dat')#①启动人脸关键点检测器face_descriptor_extractor = dlib.face_recognition_model_v1('./1/dlib_face_recognition_resnet_model_v1.dat')#①启动特征描述符检测器cap = cv2.VideoCapture(0)#②调取摄像头start_time = time.time()#开始时间,是为了interval设置的collect_count = 0#初始采集次数f = open('./2/feature.csv','a',newline="")#采集到的特征描述符放在这个文件里csv_writer = csv.writer(f)#采集3次特征 while True:ret,frame = cap.read()frame = cv2.flip(frame,1)#y轴镜像detections = hog_face_detector(frame,1)#获取人脸参数,缩放因子为1for face in detections:l,t,r,b = face.left(),face.top(),face.right(),face.bottom()#获取人脸左,上,右,下的坐标points = shape_detector(frame,face)#获取人脸68关键点for point in points.parts():cv2.circle(frame,(point.x,point.y),2,(0,255,0),-10)#绘制68关键点cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)#绘制人脸框if collect_count < count:now = time.time()if now - start_time > interval:face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)#获取特征描述符face_descriptor = [f for f in face_descriptor]#转换成列表方便存进feaure.csvline = [label_id,name,face_descriptor]csv_writer.writerow(line)#写入csv_writercollect_count +=1start_time = nowprint("采集次数:{collect_count}".format(collect_count = collect_count))copy_collect_count = collect_count
# print(face_descriptor)else:if 3 == copy_collect_count:print("采集完毕")copy_collect_count = 0break#展示 cv2.imshow('Face attendance',frame)#展示每一帧图片if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows()faceRegister()
2. 人脸识别:将检测的人脸特征与feaure.csv人脸特征作比较,如果比中把考勤记录写入attendance.csv
①从磁盘中调取注册时的人脸特征描述符,解析它
def getFeatureList():label_list = []name_list = []featuree_list = None"""后面用的np.concatenate()方法决定了此处不能是空列表,否则无法拼接"""with open('./2/feature.csv','r') as f:csv_reader = csv.reader(f)for line in csv_reader:label_id = line[0]name = line[1]face_descriptor = eval(line[2])"""从csv文件拿出来的列表是字符串,需要eval处理一下转为list"""face_descriptor = np.asarray(face_descriptor,dtype=np.float64)face_descriptor = np.reshape(face_descriptor,(1,-1))"""转成1xn格式,期望就是这样"""label_list.append(label_id)"""label_list拼接过程"""name_list.append(name)"""name_list拼接过程"""if featuree_list is None:"""featuree_list拼接过程"""featuree_list = face_descriptorelse:featuree_list = np.concatenate((featuree_list,face_descriptor),axis=0)
# print(name)return label_list,name_list,featuree_listlabel_list,name_list,featuree_list = getFeatureList()"""读取人脸注册时的特征"""
②特征描述符比对,计算与库的距离
distance = np.linalg.norm((face_descriptor-featuree_list),axis=1)"""范数求差"""
min_index = np.argmin(distance)"""获取最短距离索引"""
min_distance = np.argmin(distance)"""获取最短距离"""
if min_distance < threshold:"""识别到打印信息"""predict_id = label_list[min_distance]predict_name = name_list[min_distance]
③依据条件确认是否记录考勤
need_insert = False"""用于后面判断是否变化了考勤,是则写入到attendance.csv文件"""
if predict_name in recog_record:"""第一次检测到考勤则记录人脸信息,记录的是名字与考勤时间组成的键值对,如这次检测与上次记录差3s,则再考勤一次。上述都不是则跳过"""if time.time()-recog_record[predict_name]>3:need_insert = Truerecog_record[predict_name] = time.time()print(predict_name)else:print("无需重复签到!")need_insert = Falsepass
else:need_insert = Truerecog_record[predict_name] = time.time()print(predict_name)
④将考勤记录写入文件
if need_insert:"""考勤较上次变化了则记录"""time_local = time.localtime(recog_record[predict_name])"""时间戳"""time_str = time.strftime("%Y-%m-%d %H:%M:%S",time_local)"""化时间戳为年月日"""line = [predict_id,predict_name,min_distance,time_str]csv_writer.writerow(line)print("{name} {time}考勤记录已成功更新入文件!".format(name=predict_name,time=time_str))
①-④组合在一起复合代码如下:
def faceRecognizer(threshold = 0.5):#1)实时获取视频流中人脸特征描述符;#1准备工作label_list,name_list,featuree_list = getFeatureList()#读取人脸注册时的特征hog_face_detector = dlib.get_frontal_face_detector()#①启动hog人脸检测器shape_detector = dlib.shape_predictor('./1/shape_predictor_68_face_landmarks.dat')#①启动人脸关键点检测器face_descriptor_extractor = dlib.face_recognition_model_v1('./1/dlib_face_recognition_resnet_model_v1.dat')#①启动特征描述符检测器cap = cv2.VideoCapture(0)#②调取摄像头recog_record = {}#为存考勤信息做准备f = open('./2/attendance.csv','a',newline="")#为文件性质记录考勤数据做准备csv_writer = csv.writer(f)fps_time = time.time()#画面显示fps#2获取人脸识别中采集到的特征while True:ret,frame = cap.read()frame = cv2.flip(frame,1)#y轴镜像detections = hog_face_detector(frame,1)#获取人脸参数,缩放因子为1for face in detections:l,t,r,b = face.left(),face.top(),face.right(),face.bottom()#获取人脸左,上,右,下的坐标points = shape_detector(frame,face)#获取人脸68关键点cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)#绘制人脸框face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)#获取特征描述符face_descriptor = [f for f in face_descriptor]#转换成列表方便存进feaure.csv #3计算与库的距离distance = np.linalg.norm((face_descriptor-featuree_list),axis=1)#范数求差min_index = np.argmin(distance)#获取最短距离索引min_distance = np.argmin(distance)#获取最短距离if min_distance < threshold:#识别到打印信息predict_id = label_list[min_distance]predict_name = name_list[min_distance]#6给人脸框添加内容cv2.putText(frame,predict_name+" "+str(round(min_distance,2)),(l,b+30),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),1)#4是否记录考勤 need_insert = False#用于后面判断是否变化了考勤,是则写入到attendance.csv文件if predict_name in recog_record:#第一次检测到考勤则记录人脸信息,记录的是名字与考勤时间组成的键值对,如这次检测与上次记录差3s,则再考勤一次。上述都不是则跳过if time.time()-recog_record[predict_name]>3:need_insert = Truerecog_record[predict_name] = time.time()print(predict_name)else:print("无需重复签到!")need_insert = Falsepasselse:need_insert = Truerecog_record[predict_name] = time.time()print(predict_name)if need_insert:#考勤较上次变化了则记录time_local = time.localtime(recog_record[predict_name])#时间戳time_str = time.strftime("%Y-%m-%d %H:%M:%S",time_local)#化时间戳为年月日line = [predict_id,predict_name,min_distance,time_str]csv_writer.writerow(line)print("{name} {time}考勤记录已成功更新入文件!".format(name=predict_name,time=time_str))else:print("未识别到") #5增加FPSnow = time.time()fps = 1/(now - fps_time)fps_time = nowcv2.putText(frame,"FPS:"+str(round(fps,2)),(20,40),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),1)cv2.imshow('Face attendance',frame)#展示每一帧图片if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows() #读取人脸注册时的特征
def getFeatureList():label_list = []name_list = []featuree_list = None#后面用的np.concatenate()方法决定了此处不能是空列表,否则无法拼接with open('./2/feature.csv','r') as f:csv_reader = csv.reader(f)for line in csv_reader:label_id = line[0]name = line[1]face_descriptor = eval(line[2])#从csv文件拿出来的列表是字符串,需要eval处理一下转为listface_descriptor = np.asarray(face_descriptor,dtype=np.float64)face_descriptor = np.reshape(face_descriptor,(1,-1))#转成1xn格式,期望就是这样label_list.append(label_id)#label_list拼接过程name_list.append(name)#name_list拼接过程if featuree_list is None:#featuree_list拼接过程featuree_list = face_descriptorelse:featuree_list = np.concatenate((featuree_list,face_descriptor),axis=0)
# print(name)return label_list,name_list,featuree_listlabel_list,name_list,featuree_list = getFeatureList()
faceRecognizer(threshold = 10)
四。项目源码
源码链接:点击这里
相关文章:
人脸考勤机项目
文章内容如下: 1)项目简介 2)开发环境和使用的技术知识 3)功能实现 4)项目源码 一。项目简介 此项目是基于HOG和Dlib开发的一套实时无感考勤系统。首先是待考勤人员的个人信息录入。然后在过道或者入口处装置人脸…...

Python编程自动化办公案例(3)
作者简介:一名在校计算机学生、每天分享Python的学习经验、和学习笔记。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页 目录 前言 一.前几章代码 1.获取到第一题的选项单元格 2.实现批量获取文件 二. 批…...

Linux-MYSQL 登录数据库(命令行,图形化) 及 远程登录
命令行登录 :mysql 命令登录数据库语法 : mysql -u用户名 -p密码 -h 连接的数据库服务器的ip [-D] 数据库名 -p 端口注 : 上面的 mysql 命令是指的是 客户端的指令 ~!!-h : 指的就是 连接数据库服务器的 ip…...
electron网络环境在线/离线事件探测
electron判断网络环境问题,可以说在任何桌面应用都可以使用到,处理方式有很多种,我介绍几种办法第一种HTML5 API navigator.onLine:官方案例给的,这边为直接贴出地址了,有兴趣的同学可自行查看https://www.…...
UE 项目导航数据生成配置
WP构建及常规构建操作WP构建方式 :https://docs.unrealengine.com/5.0/zh-CN/world-partitioned-navigation-mesh/常规构建方式针对WP的构建方式特殊配置项关闭就好:取消勾选RecastNavMesh-XXX下的IsWorldPartitioned执行n.bNavMeshAllowPartitionedBuil…...

494.目标和
1. 回溯算法 这题和之前做的那些排列、组合的回溯稍微有些不同,你不需要每次选数据时都是for遍历去选择,很明显这是顺序选择的 比如 数组[0,1],target1; 递归数组,每个元素都 或者 - ,然后取最后结果为0…...

滑台模组的应用有哪些?
在自动化生产中,我们常常会看到滑台模组的身影,那么,滑台模组究竟在自动化生产设备中起着怎样的作用呢? 简单点说,滑台模组由滑块、滚珠丝杆、导轨、主体等其它传动零件组成的自动化晋级单元,经过各单元的组…...

CS224W课程学习笔记(四):node2vec算法原理与说明
引言 什么是图嵌入? 我想从上节的deepwalk中已经有一个十分完整的轮廓了,这里引出deepwalk论文中的一张很形象的图(当然,上节的一些实战演练,也将这种嵌入关系进行了模拟与可视化,前文为:&…...
扩展lucas定理
前置知识: lucas定理中国剩余定理 介绍 当正整数n,mn,mn,m很大,且质数ppp较小的时候,要求CnmC_n^mCnm对ppp取模后的值,可以用lucas定理。 但如果ppp不是质数,那该怎么办呢?如果mmm较小,则…...

医疗影像工具LEADTOOLS 入门教程: 从 PDF 中提取附件 - 控制台 C#
LEADTOOLS 是一个综合工具包的集合,用于将识别、文档、医疗、成像和多媒体技术整合到桌面、服务器、平板电脑、网络和移动解决方案中,是一项企业级文档自动化解决方案,有捕捉,OCR,OMR,表单识别和处理&#…...

【LVGL】学习笔记--(1)Keil中嵌入式系统移植LVGL
一 LVGL简介最近emwin用的比较烦躁,同时被LVGL酷炫的界面吸引到了,所以准备换用LVGL试试水。LVGL(轻量级和通用图形库)是一个免费和开源的图形库,它提供了创建嵌入式GUI所需的一切,具有易于使用的图形元素,美丽的视觉效…...

Transformer学习笔记
Transformer学习笔记1. 参考2. 模型图3.encoder部分3.1 Positional Encoding3.2 Muti-Head Attention3.3 ADD--残差连接3.4 Norm标准化3.5 单个Transformer Encoder流程图4.decoder部分4.1 mask Muti-Head Attention4.2 Muti-Head Attention5 多个Transformer Encoder和多个Tra…...

vue-cli引入wangEditor、Element,封装可上传附件的富文本编辑器组件(附源代码直接应用,菜单可调整)
关于Element安装引入,请参考我的另一篇文章:vue-cli引入Element Plus(element-ui),修改主题变量,定义全局样式_shawxlee的博客-CSDN博客_chalk variables 1、安装wangeditor npm i wangeditor --savewangE…...

移动办公时代,数智化平台如何赋能企业管理升级?
在传统的办公模式下,企业组织办公不仅时效低,周期长、成本高,且各办公系统相互独立。随着社会经济的发展,人们的工作生活变得多样化,对于办公的需求也越来越多,存在明显弊端的传统办公模式已不能满足企业对…...
2023“拼夕夕”为什么可以凭借简单的拼团做这么大?
2023“拼夕夕”为什么可以凭借简单的拼团做这么大? 2023-02-24 梦龙 大家好,我是你们熟悉而又陌生的好朋友梦龙,一个创业期的年轻人 大家都知道,拼夕夕背后的商业模式是拼团,但是大家知道为什么简单的拼团可以让拼夕…...

sqlmap工具
sqlmap Sqlmap是一个开源的渗透测试工具,可以用来自动化的检测,利用SQL注入漏洞,获取数据库服务器的权限。目前支持的数据库有MySQL、Oracle、PostgreSQL、Microsoft SQL Server、Microsoft Access等大多数据库 Sqlmap采用了以下5种独特的SQ…...

高/低压供配电系统设计——安科瑞变电站电力监控系统的应用
摘 要:在电力系统的运行过程中,变电站作为整个电力系统的核心,在保证电力系统可靠的运行方面起着至关重要的作用,基于此需对变电站监控系统的特点进行分析,结合变电站监控系统的功能需求,对变电站电力监控系…...

Tapdata 和 Databend 数仓数据同步实战
作者:韩山杰https://github.com/hantmacDatabend Cloud 研发工程师基础架构在云计算时代也发生着翻天地覆的变化,对于业务的支持变成了如何能利用好云资源实现降本增效,同时更好的支撑业务也成为新时代技术人员的挑战。 本篇文章通过…...

单核CPU, 1G内存,也能做JVM调优吗?
最近,笔者的技术群里有人问了一个有趣的技术话题:单核CPU, 1G内存的超低配机器,怎么做JVM调优?这实际上是两个问题。单核CPU的超低配机器,怎么充分利用CPU?单核CPU, 1G内存的超低配机器,怎么做J…...
《计算机应用研究》投稿经历和时间节点
记录四川计算机研究院《计算机应用研究》期刊投稿经历和时间节点。 日期状态周期2022.11.09上传稿件当天显示编辑部已接收稿件,开始初审2022.11.09 – 2022.11.15初审6天2022.11.15 – 2022.12.21外审36天2022.12.21收到退修意见(邮件形式)编…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

恶补电源:1.电桥
一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...