建立一个新的高阶数学教授模式,知其然,知其用,知其之所以然,知其所以然
1. 传统常用的模式
概念,性质,定理,定理证明,定理应用;
这个学习模式挺好的,但是定理证明过程往往很冗长,而且不易记忆,也就是说,即使推导了定理,初学者也记不住这个推导过程和思路;
当然不是说推导不重要,而是很重要;但是,耗费精力太大,会减缓初学者建立知识体系的速度;
2. 新的讲授模式
一个可以尝试的数学讲授模式:
第一章:
概念1.1,性质,定理1.1是什么,为什么要引入这个定理,如何应用这个定理;
概念1.2,性质,定理1.2是什么,为什么要引入这个定理,如何应用这个定理;
...
概念1.n,性质,定理1.3是什么,为什么要引入这个定理,如何应用这个定理;
定理1.1的证明;
定理1.2的证明;
...
定理1.n的证明;
-----------------------------------
第二章:
概念2.1,性质,定理2.1是什么,为什么要引入这个定理,如何应用这个定理;
概念2.2,性质,定理2.2是什么,为什么要引入这个定理,如何应用这个定理;
...
概念2.n,性质,定理2.3是什么,为什么要引入这个定理,如何应用这个定理;
定理2.1的证明;
定理2.2的证明;
...
定理2.n的证明;
-----------------------------------
或者先把整本书的应用讲完,再讲定理证明
这样的好处在于入门容易,建立体系容易,并且勾起对定理成立与否的好奇,然后待时机成熟时,再开展证明。
传统方式的弊端:在定理本身是什么的冲击下,一般同学不会对其为何成立产生好奇,而对于是什么,能做什么的掌握将占据主要精力。等应用后,熟悉到一个程度时,对其真理性才会产生好奇,也具有足够的心理准备和查看证明过程的意愿;
3. 示例
相关文章:
建立一个新的高阶数学教授模式,知其然,知其用,知其之所以然,知其所以然
1. 传统常用的模式 概念,性质,定理,定理证明,定理应用; 这个学习模式挺好的,但是定理证明过程往往很冗长,而且不易记忆,也就是说,即使推导了定理,初学者也记…...
AtCoder ABC324G 启发式合并
题意 传送门 AtCoder ABC324G Generate Arrays 题解 逆则操作顺序考虑,可以看作至多 n n n 个联通分量不断合并的过程,此时使用启发式合并,即规模较小的连通分量向规模较大的连通分量合并,以单个元素合并为基本运算࿰…...

SpringBootCMS漏洞复现分析
SpringBootCMS,极速开发,动态添加字段,自定义标签,动态创建数据库表并crud数据,数据库备份、还原,动态添加站点(多站点功能),一键生成模板代码,让您轻松打造自己的独立网站ÿ…...

iOS- flutter flavor 多环境Configurations配置
一、点击PROJECT的Runner,选择Info选项,在Configurations下方的号添加不同环境的配置,如下图: 二、选择TAGETS的Runner项目,选择Build Settings选项,在输入框输入package,为不同环境配置相应的…...

【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)
0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。 本文基于PyTorch通过tensor点积所需要的时…...
npm 常用指令总结
1. 初始化包 一个存放了代码的文件夹,如果里面有 package.json 文件,则可以把这个文件夹称之为包。 npm init -y 注意: 由于包名不能有中文,不能有大写,不能和未来要下载的包重名. 所以我们快速初始化包时,我们的文件夹也不能违反前面说的规则.(因为默认会将文件夹的名称,作…...

布朗大学发现GPT-4存在新问题,可通过非常见语言绕过限制
🦉 AI新闻 🚀 布朗大学发现GPT-4存在新漏洞,可通过非常见语言绕过限制 摘要:布朗大学计算机科学研究人员发现了OpenAI的GPT-4存在新漏洞,利用不太常见的语言如祖鲁语和盖尔语可以绕过各种限制。研究人员测试了GPT-4对…...
ESP32网络编程-TCP客户端数据传输
TCP客户端数据传输 文章目录 TCP客户端数据传输1、IP/TCP简单介绍2、软件准备3、硬件准备4、TCP客户端实现本文将详细介绍在Arduino开发环境中,实现一个ESP32 TCP客户端,从而达到与TCP服务器数据交换的目标。 1、IP/TCP简单介绍 Internet 协议(IP)是 Internet 的地址系统,…...

微信小程序入门级
目录 一.什么是小程序? 二.小程序可以干什么? 三.入门使用 3.1. 注册 3.2. 安装 3.3.创建项目 3.4.项目结构 3.5.应用 好啦今天就到这里了,希望能帮到你哦!!! 一.什么是小程序? 微信小程…...
博客文档续更(二)
十五、博客前台模块-个人信息 1. 接口分析 进入个人中心的时候需要能够查看当前用户信息。请求不需要参数 请求方式 请求地址 请求头 GET /user/userInfo 需要token请求头 响应格式 {"code":200,"data":{"avatar":"头像的网络地址…...
Centos切换yum源
Centos切换yum源 常用命令 #查看内核/操作系统/CPU信息 uname -a #查看yum源 yum list repolist all切换步骤 1.备份yum源文件 cp -a /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak2.下载新的CentOS-Base.repo文件到/etc/yum.repos.d/目录下 …...

milvus和相似度检索
流程 milvus的使用流程是 创建collection -> 创建partition -> 创建索引(如果需要检索) -> 插入数据 -> 检索 这里以Python为例, 使用的milvus版本为2.3.x 首先按照库, python3 -m pip install pymilvus Connect from pymilvus import connections c…...

龙迅LT7911UXC 是一款高性能TYPE-C/DP/EDP转换四端口MIPI/LVDS的芯片,还支持图像处理
龙迅LT7911UXC 1.描述: LT7911UXC是一款用于VR/显示应用的高性能Type-C/DP1.4a到MIPI或LVDS芯片。HDCP RX作为 HDCP中继器的上游端,可以与其他芯片的HDCP TX协同工作,实现中继器的功能。对于DP1.4a 输入,LT7911UXC可以配置为1…...

TOR(Top of Rack)
TOR TOR(Top of Rack)指的是在每个服务器机柜上部署1~2台交换机,服务器直接接入到本机柜的交换机上,实现服务器与交换机在机柜内的互联。虽然从字面上看,Top of Rack指的是“机柜顶部”,但实际T…...

使用asp.net core web api创建web后台,并连接和使用Sql Server数据库
前言:因为要写一个安卓端app,实现从服务器中获取电影数据,所以需要搭建服务端代码,之前学过C#,所以想用C#实现服务器段代码用于测试,本文使用C#语言,使用asp.net core web api组件搭建服务器端&…...

LaTeX 公式与表格绘制技巧
LaTeX 公式与绘图技巧公式基本可以分为 单一公式单一编号单一公式按行编号单一公式多个子编号单一公式部分子编号分段公式现在给出各自的代码单一公式单一编号 公式1:equationaligned\begin{equation}\begin{aligned}a&bc\\b&a2\\c&b-3\end{aligned}\en…...

Spring Cloud--Nacos+@RefreshScope实现配置的动态更新
原文网址:Spring Cloud--NacosRefreshScope实现配置的动态更新_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍SpringCloud整合Nacos使用RefreshScope实现动态更新配置。 官网 Nacos Spring Cloud 快速开始 动态更新的介绍 动态更新的含义:修改应…...

Elasticsearch安装
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...
【JavaSE API 】生成随机数的2种方法:Random类和Math类的Random方法
生成随机数的两种方法 Random类和Math类的random方法都可以用来生成随机数 而Math类的random方法则是基于系统时间的伪随机数生成器,大于等于0.0小于1.0的随机double值范围[0,1)。例如: double num1 Math.random() * 5 4;//范围[4,9) Random类是基于种…...

微软和OpenAI正在开发AI芯片, 并计划下个月发布
今年初,Chat**引起了无数网友关注,一度成为了热门话题。这是由人工智能研究实验室OpenAI开发的一款聊天机器人模型,也称为一种人工智能(AI)技术驱动的自然语言处理工具。能够通过学习和理解人类的语言来进行对话&#…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...