当前位置: 首页 > news >正文

深入浅出ThreadPoolExecutor(一)

文章目录

    • 线程池简诉
    • ThreadPoolExecutor详解
      • ThreadPoolExecutor参数详解
      • 创建线程池的工具类Executors

线程池简诉

针对各种池子,比如

  • 连接池:用于管理和重复使用数据库连接,避免频繁创建和销毁数据库连接带来的性能开销。
  • 对象池:用于管理和重复使用对象,避免频繁创建和销毁对象带来的性能开销。
  • 字符串池:用于管理和重复使用字符串,避免频繁创建和销毁字符串带来的性能开销。
    线程池的话也是一样的,用于管理和重复使用线程,避免频繁创建和销毁线程带来的性能开销。
    而线程池的工作原理就是相当于把任务提交到一个阻塞队列里面,如何线程去阻塞队列里面拿到任务去执行.

ThreadPoolExecutor详解

首先看看UML图:
image.png
可以看到最顶层的接口是Executor,就是线程池的顶层接口,线程池的作用就是执行方法,而Executor方法里面就一个方法:
void execute(Runnable command);
这个方法就是线程池最主要的方法,执行runnable任务,然后ExecutorService又对线程池的功能进行了加强,比如可以进行管理线程池,且提供了执行任务的能力,比如执行异步返回Future结果的方法,执行多个任务的方法;

ThreadPoolExecutor参数详解

最主要的构造方法:

 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;}
  • int corePoolSize 核心线程数(一般为cpu数Runtime.getRuntime().availableProcessors())
  • int maximumPoolSize 最大线程数(一般为cpu数*2)
  • long keepAliveTime 存活的时长(<最大线程数,<核心线程数的)
  • TimeUnit 时间单位
  • BlockingQueue workQueue 工作队列
  • ThreadFactory threadFactory 线程工厂,创建线程的地方
  • RejectedExecutionHandler handler 拒绝策略
    需要注意的是,maximumPoolSize 是当线程队列满了,且核心线程都在执行中的时候,再提交任务,就不会放到队列里面,只会新建线程执行,如果线程数量等于了最大线程数的时候,就会走对应的拒绝策略,如果任务执行完,过期时间才会对新增线程有效,当然有个方法allowCoreThreadTimeOut,让核心线程也可以过期(一般不会设置的),一般工作队列不会设置为无限队列,因为如果队列无限长可能会造成oom,且最大线程数就没用了.

创建线程池的工具类Executors

  • newFixedThreadPool
    创建固定大小的线程池。核心数和最大数是一样的,任务如果过多会在队列中阻塞.如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
  • newWorkStealingPool
    1.8新加的线程池,forkJoinPool 可以根据CPU的核数并行的执行,适合使用在很耗时的操作,可以充分的利用CPU执行任务,
    任务窃取线程池,不保证执行顺序,适合任务耗时差异较大。
    线程池中有多个线程队列,有的线程队列中有大量的比较耗时的任务堆积,而有的线程队列却是空的,就存在有的线程处于饥饿状态,当一个线程处于饥饿状态时,它就会去其它的线程队列中窃取任务。解决饥饿导致的效率问题。
    默认创建的并行 level 是 CPU 的核数。主线程结束,即使线程池有任务也会立即停止。
  • newSingleThreadExecutor
    创建一个单线程的线程池。这个线程池的核心数和最大数都是1,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
  • newCachedThreadPool
    创建一个可缓存的线程池。核心数是0,最大数是 Integer.MAX_VALUE,如果一下子任务很多,且执行时间长,容易发生异常,堆溢出,且执行效率降低,并不是线程数目越多,执行越快的,如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
  • newScheduledThreadPool
    支持周期性任务的调度。此线程池支持定时以及周期性执行任务的需求。按道理来说线程池的最大数是 Integer.MAX_VALUE,但是,线程数并不会超过核心数…是固定长度的.

这些方法基本都是创建ThreadPoolExecutor,或者继承ThreadPoolExecutor,对其进行增强.

#任务拒绝策略
默认的拒绝策略是AbortPolicy,直接抛出异常

    private static final RejectedExecutionHandler defaultHandler =new AbortPolicy();public static class AbortPolicy implements RejectedExecutionHandler {/*** Creates an {@code AbortPolicy}.*/public AbortPolicy() { }/*** Always throws RejectedExecutionException.** @param r the runnable task requested to be executed* @param e the executor attempting to execute this task* @throws RejectedExecutionException always*/public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {throw new RejectedExecutionException("Task " + r.toString() +" rejected from " +e.toString());}}
  • ThreadPoolExecutor.AbortPolicy 丢弃任务并且抛出- RejectedExecutionException异常。在任务不能提交的时候,抛出异常,及时反馈程序运行状态。如果是比较关键的业务,推荐使用此拒绝策略,这样子在系统不能承受更大的并发量的时候,能够及时通过异常发现。
  • ThreadPoolExecutor.DiscardPolicy 丢弃任务,但是不抛出异常。使用此策略,可能会使我们无法发现系统的异常状态。建议是一些无关紧要的业务采用此策略。
  • ThreadPoolExecutor.DiscardOldestPolicy 丢弃队列最前面的任务,然后重新提交被拒绝的任务。
  • ThreadPoolExecutor.CallerRunsPolicy 由调用线程(提交任务的线程)处理该任务。这种情况是需要让所有任务都执行完毕,那么就适合大量计算的任务类型去执行,多线程仅仅是增大吞吐量的手段,最终必须要让每个任务都执行完毕。

相关文章:

深入浅出ThreadPoolExecutor(一)

文章目录 线程池简诉ThreadPoolExecutor详解ThreadPoolExecutor参数详解创建线程池的工具类Executors 线程池简诉 针对各种池子,比如 连接池:用于管理和重复使用数据库连接&#xff0c;避免频繁创建和销毁数据库连接带来的性能开销。对象池&#xff1a;用于管理和重复使用对象…...

网站的常见攻击与防护方法

在互联网时代&#xff0c;几乎每个网站都存在着潜在的安全威胁。这些威胁可能来自人为失误&#xff0c;也可能源自网络犯罪团伙所发起的复杂攻击。无论攻击的本质如何&#xff0c;网络攻击者的主要动机通常是谋求经济利益。这意味着无论您经营的是电子商务项目还是小型商业网站…...

网络工程师知识点3

41、各个路由协议&#xff0c;在华为设备中的优先级&#xff1f; 直连路由 0 OSPF 10 静态 60 42、OSPF&#xff1a;开放式最短路径优先路由协议&#xff0c;使用SPF算法发现和计算路由 OSPF的优点&#xff1a; 1、收敛速度快&#xff0c;无路由自环&#xff0c;适用于大型网络…...

mongoDB 性能优化

文章目录 前言mongoDB 性能优化1. explain方法来查看查询的执行计划2. 查看mongoDB 集合的索引3. mongoDB 怎么添加索引4. 升序索引与降序索引是什么意思 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易…...

10月13日,每日信息差

今天是2023年10月13日&#xff0c;以下是为您准备的13条信息差 第一、欧盟投资4.5亿欧元在法国建设电池超级工厂。欧洲投资银行是欧盟的贷款机构&#xff0c;也是世界上最大的跨国银行之一 ​第二、北京银行推出数字人民币智能合约平台 数字人民币预付资金管理产品在商超场景…...

Spring Boot 中的 Redis 数据操作配置和使用

Spring Boot 中的 Redis 数据操作配置和使用 Redis&#xff08;Remote Dictionary Server&#xff09;是一种高性能的开源内存数据库&#xff0c;用于缓存、消息队列、会话管理和数据存储。在Spring Boot应用程序中&#xff0c;Redis被广泛用于各种用例&#xff0c;包括缓存、…...

rust宏

宏看起来和函数很像&#xff0c;只不过名称末尾有一个感叹号 ! 。 宏并不产生函数调用&#xff0c;而是展开成源码&#xff0c;并和程序的其余部分一起被编译。 Rust宏和C不同&#xff0c;Rust的宏会展开为抽象语法树&#xff08;AST&#xff0c;abstract syntax tree&#xff…...

性能测试之性能测试指标详解

前言 刚开始&#xff0c;以为做性能测试&#xff0c;就是做些脚本、参数化、关联&#xff0c;压起来之后&#xff0c;再扔出一个结果。 但实际上不止这些内容&#xff0c;还要加上性能分析&#xff0c;关注调优之后响应时间有多大的提升&#xff0c;TPS 有多大的提高&#xf…...

CustomNavBar 自定义导航栏视图

1. 创建偏好设置键 CustomNavBarTitlePreferenceKey.swift import Foundation import SwiftUI//State private var showBackButton: Bool true //State private var title: String "Title" //"" //State private var subtitle: String? "SubTitl…...

canal rocketmq

上篇文章canal 消费进度说到直接使用ClusterCanalConnector并发消费是有问题的&#xff0c;可以先用单点将canal事件发送到mq中&#xff0c;再由mq并发处理&#xff0c;另外mq还可以做到削峰的作用&#xff0c;让canal数据不至于阻塞。 使用队列&#xff0c;可以自己起一个单实…...

【数据库系统概论】第九章关系查询处理何查询优化

9.1查询处理 一&#xff1a;查询处理步骤 关系数据库管理系统查询处理可以分为4个阶段&#xff1a; 查询分析查询检查查询优化查询执行 &#xff08;1&#xff09;查询分析 任务&#xff1a;对查询语句进行扫描&#xff0c;分析词法、语法是否符合SQL语法规则 如果没有语…...

bp盐丘模型波场数值模拟matlab

波场数值模拟是地震勘探和地震学研究中常用的工具&#xff0c;而BP&#xff08;Backpropagation&#xff09;盐丘模型是一种用于地下介质成像的方法。如果您想在MATLAB中进行波场数值模拟&#xff0c;并结合BP盐丘模型进行地下成像&#xff0c;可以按照以下步骤进行&#xff1a…...

结构体对齐规则

1.第一个成员在结构体变量偏移量为0的地址处。 2.其他成员变量对齐到某个数字(对齐数)的整数倍的地址处。(对齐数编译器默认的一个对齐数与该成员大小的较小值&#xff09;注意&#xff1a;目前有且只有VS编译器有默认为8. 3.结构体总大小为最大对齐数的整数倍。 4.如果嵌套…...

css 如何让元素内部文本和外部文本 一块显示省略号

实际上还是有这样的需求的 <div class"container"><span>啊啊啊啊啊啊啊啊</span>你好啊撒撒啊撒撒撒撒啊撒撒撒撒撒说</div>还是有这样的需求的哦。 div.container {width: 200px;white-space: nowrap;text-overflow: ellipsis;overflow:…...

SQL语句-中级

一、Mysql软件使用 1.启动/停止Mysql服务器 任务管理器 cmd命令&#xff1a;以管理员的身份打开cmd命令行 net start mysql80//开启net stop mysql80//停止 2.连接与断开Mysql服务器 注意要在bin目录下执行:-u用户名root&#xff0c;-p密码 mysql -u root -p 可能出现的…...

巧用h2-database.jar连接数据库

文章目录 一 、概述二、实践三、解决办法 一 、概述 H2 Database是一个开源的嵌入式数据库引擎&#xff0c;采用java语言编写&#xff0c;不受平台的限制&#xff0c;同时H2 Database提供了一个十分方便的web控制台用于操作和管理数据库内容。H2 Database还提供兼容模式&#…...

136.只出现一次的数字

136. 只出现一次的数字 - 力扣&#xff08;LeetCode&#xff09; 给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且…...

mysql中遇到查询字段的别名与函数冲突问题

比如以下哎&#xff0c;我查询城市行业数量排名 select City, DENSE_RANK() over(ORDER BY COUNT(Id) DESC) rank, COUNT(Id) num,IndustrySubGroupName from base_companyinfo WHERE IndustrySubGroupName工业机器人 GROUP BY City 上面使用 DENSE_RANK() 函数来计算排名&am…...

直播获奖

题目描述 NOI2130 即将举行。为了增加观赏性&#xff0c; CCF 决定逐一评出每个选手的成 绩&#xff0c;并直播即时的获奖分数线。本次竞赛的获奖率为 &#x1d464;% &#xff0c;即当前排名前 &#x1d464;% 的选手的最低成绩就是即时的分数线。 更具体地&#xff0c…...

选择适合自身业务的HTTP代理有哪些因素决定?

相信对很多爬虫工作者和数据采集的企业来说&#xff0c;如何选购适合自己业务的HTTP代理是一个特别特别困扰的选题&#xff0c;市面上那么多HTTP代理厂商&#xff0c;好像这家有这些缺点&#xff0c;转头又看到另外一家的缺点&#xff0c;要找一家心仪的仿佛大海捞针。今天我们…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...