基于秃鹰优化的BP神经网络(分类应用) - 附代码
基于秃鹰优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于秃鹰优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.秃鹰优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 秃鹰算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用秃鹰算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.秃鹰优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 秃鹰算法应用
秃鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/113775430
秃鹰算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从秃鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明秃鹰算法起到了优化的作用:



5.Matlab代码
相关文章:
基于秃鹰优化的BP神经网络(分类应用) - 附代码
基于秃鹰优化的BP神经网络(分类应用) - 附代码 文章目录 基于秃鹰优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.秃鹰优化BP神经网络3.1 BP神经网络参数设置3.2 秃鹰算法应用 4.测试结果:5.M…...
C++笔记之std::future的用法
C笔记之std::future的用法 code review! 文章目录 C笔记之std::future的用法1.C中std::future和std::async总是一起出现吗?2.主要特点和用法3.一个完整的例子4.std::future 存放的是一个结果吗?5.cppreference——std::future 1.C中std::future和std::a…...
openssl学习——消息认证码原理
消息认证码原理 消息认证码(Message Authentication Code, MAC)是一种技术,它的原理是通过对消息和密钥进行特定的处理,生成一个固定长度的数据,这个数据就是消息认证码(MAC)。这个过程可以看作…...
Netty使用SslHandler实现加密通信-单向认证篇
引入依赖 <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.100.Final</version> </dependency>生成keystore.jks文件 keytool -genkeypair -alias your_alias -keyalg RSA -keysto…...
Jetpack:007-Kotlin中的Button
文章目录 1. 概念介绍2. 使用方法2.1 Button2.2 IconButton2.3 ElevatedButton2.4 OutlinedButton2.5 TextButton2.6 FloatingActionButton 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack中输入框相关的内容,本章回中将要介绍 Button。闲话休提࿰…...
opencv图形绘制2
目录 制作宣传语(中文) 制作宣传语(英文) 绘制标记 鼠标交互绘制十字线 鼠标交互绘制图形 鼠标交互制作几何画板 滚动条控制 鼠标事件练习 制作宣传语(中文) import cv2 import numpy as np from …...
“华为杯”研究生数学建模竞赛2019年-【华为杯】A题:无线智能传播模型(附优秀论文及Pyhton代码实现)(续)
目录 六、问题三的分析与建模 6.1 问题三的分析 6.2 问题三的建模 6.2.1 模型介绍...
爬虫 | 正则、Xpath、BeautifulSoup示例学习
文章目录 📚import requests📚import re📚from lxml import etree📚from bs4 import BeautifulSoup📚小结 契机是课程项目需要爬取一份数据,于是在CSDN搜了搜相关的教程。在博主【朦胧的雨梦】主页学到很多…...
nginx的location的优先级和匹配方式
nginx的location的优先级和匹配方式 在http模块中有server,server模块中有location,location匹配的是uri 在一个server中,会有多个location,如何来确定匹配哪个location niginx的正则表达式 ^ 字符串的起始位置 $ 字符串的…...
深入了解Spring Boot Actuator
文章目录 引言什么是ActuatorActuator的底层技术和原理端点自动配置端点请求处理端点数据提供端点数据暴露 如何使用Actuator添加依赖访问端点自定义端点 实例演示结论 引言 Spring Boot Actuator是一个非常强大且广泛使用的模块,它为Spring Boot应用程序提供了一套…...
【SQL】NodeJs 连接 MySql 、MySql 常见语句
1.安装 mysql npm install mysql 2.引入MySql import mysql from mysql 3.连接MySql const connection mysql.createConnection({host: yourServerip,user: yourUsername,password: yourPassword,database: yourDatabase })connection.connect(err > {if (err) {console…...
SSH 基础学习使用
什么是SSH 1.SSH SSH(Secure Shell) 是较可靠,专为远程登录会话和其他网络服务提供安全性的协议,利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。 实际应用中,主要用于保证远程登录和远程通信的安全&#…...
JavaFX: 使用本地openjfx包
JavaFX: 使用本地openjfx包 1、注释配置2、下载openjfx包3、导入openjfx的jar包 1、注释配置 build.gradle配置注释: 2、下载openjfx包 下载javaFx地址:https://gluonhq.com/products/javafx/ 3、导入openjfx的jar包...
【HCIA】静态路由综合实验
实验要求: 1、R6为ISP,接口IP地址均为公有地址,该设备只能配置IP地址之后不能再对其进行任何配置 2、R1-R5为局域网,私有IP地址192.168.1.0/24,请合理分配 3、R1、R2、R4,各有两个环回IP地址;R5,R6各有一…...
Django框架集成Celery异步-【2】:django集成celery,拿来即用,可用操作django的orm等功能
一、项目结构和依赖 study_celery | --user |-- models.py |--views.py |--urls.py |--celery_task |--__init__.py |--async_task.py |-- celery.py | --check_task.py | --config.py | --scheduler_task.py | --study_celery | --settings.py | --manage.py 依赖:…...
获取本地缓存数据修改后,本地缓存中的值也修改问题
获取本地缓存数据修改后,本地缓存中的值也修改问题 JAVA缓存,获取数据后修改,缓存中的数值也会修改,解决方法是创建新的对象再修改值比如使用BeanUtils.copyProperties()方法。如果值是List,可以使用两种方法解决循环…...
云开发校园宿舍/企业/部门/物业故障报修小程序源码
微信小程序云开发校园宿舍企业单位部门物业报修小程序源码,这是一款云开发校园宿舍报修助手工具系统微信小程序源码,适用于学校机房、公司设备、物业管理以及其他团队后勤部,系统为简单云开发,不需要服务器域名即可部署࿰…...
K邻近算法(KNN,K-nearest Neighbors Algorithm)
文章目录 前言应用场景欧几里得距离(欧氏距离)两类、单一属性(1D)两类、两种属性(2D)两类、两种以上属性(>3D) Examples in R再来一个补充一下什么是变量 什么是变量?…...
前端基础一:用Formdata对象来上传图片的原因
最近有人问:你是否能用json来传图片,其实应该这么理解就对了。 一、上传的数据体格式Content-Type 1.application/x-www-form-urlencoded 2.application/json 3.multipart/form-data 以上三种类型旨在告诉服务器需要接收的数据类型同事要…...
CSS的布局 Day03
一、显示模式: 网页中HTML的标签多种多样,具有不同的特征。而我们学习盒子模型、使用定位和弹性布局把内容分块,利用CSS布局使内容脱离文本流,使用定位或弹性布局让每块内容摆放在想摆放的位置,让网站页面布局更合理、…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
