当前位置: 首页 > news >正文

c 语言基础题目:L1-034 点赞

        微博上有个“点赞”功能,你可以为你喜欢的博文点个赞表示支持。每篇博文都有一些刻画其特性的标签,而你点赞的博文的类型,也间接刻画了你的特性。本题就要求你写个程序,通过统计一个人点赞的纪录,分析这个人的特性。

输入格式:

        输入在第一行给出一个正整数N(≤1000),是该用户点赞的博文数量。随后N行,每行给出一篇被其点赞的博文的特性描述,格式为“K F1​⋯FK​”,其中1≤K≤10,Fi​(i=1,⋯,K)是特性标签的编号,我们将所有特性标签从1到1000编号。数字间以空格分隔。

输出格式:

        统计所有被点赞的博文中最常出现的那个特性标签,在一行中输出它的编号和出现次数,数字间隔1个空格。如果有并列,则输出编号最大的那个。

输入样例:

4
3 889 233 2
5 100 3 233 2 73
4 3 73 889 2
2 233 123

输出样例:

233 3

解题思路: 

  1. 定义变量和数组:你首先定义了一个整数n来记录特性标签的数量,然后定义了一个大小为1001的整数数组a,所有元素初始化为0。数组的每个索引对应一个可能的特性标签,数组的值表示对应标签在数组中出现的次数。
  2. 读取输入:程序接下来读取特性标签的数量n,然后对于每个特性标签,程序读取一个数k,表示该标签出现的次数。
  3. 更新数组:对于每个特性标签,程序会读取k个数字,并将这些数字对应的特性标签在数组a中的值加1,表示这个标签出现的次数增加了。
  4. 查找最大值:在所有特性标签都被处理过后,程序开始查找数组a中出现次数最多的标签。你使用一个变量index来记录当前找到的出现次数最多的标签,并在每次遇到新的更大值时更新这个变量。注意你的代码中用了小于等于 <= 的条件来确保当出现次数相同时,选择小的标签。只需要保存最大的那个值就可以了。
  5. 输出结果:最后,程序打印出出现次数最多的标签的索引和它的出现次数。

程序源码:

#include<stdio.h> // 引入标准输入输出库,使得程序可以使用scanf和printf等函数  int main(){ // 主函数开始,程序从这里执行  int n,a[1001]={0};//定义a数组数组的元素下标与特性标签的号码一一对应  int i,j,k;//定义循环变量int index=0;//index用来记录已经查找过的标签出现次数最多的哪一项  // 定义整数n,用于存储特性标签的数量;定义一个大小为1001的数组a,并将其所有元素初始化为0。这个数组的每个索引i对应一个特性标签i,数组a中索引i的值表示特性标签i的出现次数  scanf("%d",&n); // 从标准输入读取一个整数并存储到变量n中,这个整数表示特性标签的数量  for(i=0;i<n;i++){ // 开始一个循环,对每个特性标签进行处理  scanf("%d",&k); // 从标准输入读取一个整数并存储到变量k中,这个整数表示当前特性标签的出现次数  for(j=0;j<k;j++){ // 开始另一个循环,对每个特性标签的出现次数进行处理  int num;  scanf("%d",&num); // 从标准输入读取一个整数并存储到变量num中,这个整数表示当前特性标签的出现次数内的某一个数字  a[num]++; // 将数组a中对应数字num的元素加1,表示数字num出现了一次  }  }  // 定义一个整数index,并将其初始化为0。这个变量用于记录到目前为止出现次数最多的特性标签的索引  for(i=0;i<1001;i++){ // 开始一个循环,遍历数组a的所有元素  if(a[index]<=a[i]){//条件是小于等于以确保出现次数相同时小标签更新为大标签  // 如果当前元素的值小于等于当前最大的出现次数,那么更新index为当前元素的索引  index=i;  }  }  printf("%d %d",index,a[index]); // 打印出现次数最多的特性标签的索引和它的出现次数  return 0; // 主函数结束,返回0表示程序正常退出  
}

相关文章:

c 语言基础题目:L1-034 点赞

微博上有个“点赞”功能&#xff0c;你可以为你喜欢的博文点个赞表示支持。每篇博文都有一些刻画其特性的标签&#xff0c;而你点赞的博文的类型&#xff0c;也间接刻画了你的特性。本题就要求你写个程序&#xff0c;通过统计一个人点赞的纪录&#xff0c;分析这个人的特性。 …...

SaaS人力资源管理系统的Bug

SaaS人力资源管理系统的Bug Bug1【18】 这里我是直接把代码复制过来的&#xff0c;然后就有一个空白 这是因为它的代码有问题&#xff0c;原本的代码如下所示 <el-table-column fixed type"index" label"序号" width"50"></el-table…...

GPTQ 和 AWQ:LLM 量化方法的比较

大语言模型&#xff08;LLM&#xff09;在自然语言处理&#xff08;NLP&#xff09;任务中取得了显著的进展。然而&#xff0c;LLM 通常具有非常大的模型大小和计算复杂度&#xff0c;这限制了它们在实际应用中的部署。 量化是将浮点数权重转换为低精度整数的过程&#xff0c;…...

JVM:虚拟机类加载机制

JVM:虚拟机类加载机制 什么是JVM的类加载 众所周知&#xff0c;Java是面向对象编程的一门语言&#xff0c;每一个对象都是一个类的实例。所谓类加载&#xff0c;就是JVM虚拟机把描述类的数据从class文件加载到内存&#xff0c;并对数据进行校验&#xff0c;转换解析和初始化&a…...

PHP筆記

​ 前言因緣際會下還是開始學習php了。經歷了風風雨雨終於在今年暑假要去加拿大留學了&#xff0c;php會是第二年的其中一門必修課程&#xff0c;加上最近前端也真的蠻心累&#xff0c;也許有一門精進的後端語言&#xff0c;日後轉職會有更寬廣的道路&#xff0c;對自己說加油&…...

IDEA启动报错Failed to create JVM. JVM path的解决办法

今天启动IDEA时IDEA报错&#xff0c;提示如下。 if you already hava a JDK installed, define a JAVA_HOME variable in Computer > Systen Properties > System Settings > Environment Variables.Failed to create JVM. JVM path:D:\ideaIU2023.2.3\IntelliJ IDE…...

源码解析FlinkKafkaConsumer支持周期性水位线发送

背景 当flink消费kafka的消息时&#xff0c;我们经常会用到FlinkKafkaConsumer进行水位线的发送&#xff0c;本文就从源码看下FlinkKafkaConsumer.assignTimestampsAndWatermarks指定周期性水位线发送的流程 FlinkKafkaConsumer水位线发送 1.首先从Fetcher类开始&#xff0c…...

Nginx:动静分离(示意图+配置讲解)

示意图&#xff1a; 动静分离 动静分离是指将动态内容和静态内容分开处理的一种方式。通常&#xff0c;动态内容是指由服务器端处理的&#xff0c;例如动态生成的网页、数据库查询等。静态内容是指不需要经过服务器端处理的&#xff0c;例如图片、CSS、JavaScript文件等。通过…...

通讯网关软件024——利用CommGate X2Access实现Modbus TCP数据转储Access

本文介绍利用CommGate X2ACCESS实现从Modbus TCP设备读取数据并转储至ACCESS数据库。CommGate X2ACCESS是宁波科安网信开发的网关软件&#xff0c;软件可以登录到网信智汇(http://wangxinzhihui.com)下载。 【案例】如下图所示&#xff0c;实现从Modbus TCP设备读取数据并转储…...

vim工具的使用

目录 vi/vim键盘图 1、vim的基本概念 2、vim的基本使用 3、vim命令模式命令集 4、vim底行模式命令集 5、参考资料 vi/vim键盘图 1、vim的基本概念 vi和vim的区别&#xff1a;vi和vim的区别简单点来说&#xff0c;它们都是多模式编辑器&#xff0c;不同的是vim是vi…...

Docker学习_存储篇

当以默认的方式创建容器时&#xff0c;容器中的数据无法直接和其他容器或宿主机共享。为了解决这个问题需要学习一些Docker 存储卷的知识。 Docker提供了三种存储的方式。 bind mount共享宿主机文件目录volume共享docker存储卷tmpfs mount共享内存 volume* volume方式是容器…...

微信小程序获取当前日期时间

一、直接使用方式 在小程序中获取当前系统日期和时间&#xff0c;可直接拿来使用的常用的日期格式 //1. 当前日期 YYYY-MM-DDnew Date().toISOString().substring(0, 10)new Date().toJSON().substring(0, 10)//2. 当前日期 YYYY/MM/DDnew Date().toLocaleDateString()//3.…...

Unity关键词语音识别

一、背景 最近使用unity开发语音交互内容的时候&#xff0c;遇到了这样的需求&#xff0c;就是需要使用语音关键字来唤醒应用程序&#xff0c;然后再和程序做交互&#xff0c;有点像智能音箱的意思。具体的技术方案方面&#xff0c;也找了一些第三方的服务&#xff0c;比如百度…...

SpringBoot的配置文件——.yml和.properties

目录 1. Spring Boot 配置文件的使用场景 2. 配置文件的两种格式 2.0 特殊说明&#xff1a; 2.1 .properties 2.1.1 格式 2.2.2 缺陷 2.2.3 解决中文乱码的问题 2.2 .yml 2.2.3 格式 配置数据库连接 注意转义字符 ​编辑 ​编辑 配置null 配置对象 从.yml读取文件举例 Stud…...

Retrieve Anything To Augment Large Language Models

简介 论文主要介绍了一套通过对比学习和蒸馏学习的方法&#xff0c;来增强学习了embedding向量&#xff0c;然后能够在知识增强&#xff0c;长上下文建模&#xff0c;ICL和工具学习等方面来增强大模型能力。...

什么是面向对象编程

面向对象编程&#xff08;Object-oriented programming&#xff0c;简称OOP&#xff09;是一种编程范型&#xff0c;通过将数据和方法&#xff08;即属性和行为&#xff09;组织在一个单元中&#xff0c;以模拟现实世界中的实体或概念。在面向对象编程中&#xff0c;数据和方法…...

c++视觉处理----固定阈值操作:Threshold()函数,实时处理:二值化,反二值化,截断,设为零,反向设为零

固定阈值操作&#xff1a; Threshold()函数 cv::threshold() 函数是OpenCV中用于执行固定阈值二值化操作的函数。它可以用来将图像中的像素值根据用户定义的阈值转换为二进制值&#xff08;0或255&#xff09;&#xff0c;以便进行图像分割、物体检测和特征提取等任务。 cv::…...

KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(8)

接前一篇文章:KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(7) 上一回讲到了drm_internal_framebuffer_create函数中的framebuffer_check函数中的drm_get_format_info函数,讲解了该函数的第一部分暨前一部分,本文讲解后一部分。为了便于理解以及理清脉络和当前所…...

【问题解决】Ubuntu 安装 SeisSol 依赖 easi 报错解决: undefined reference to `H5free_memory‘

兼职帮客户安装 SeisSol 时问题解决&#xff0c;安装 easi 这个报错卡了很久&#xff08;搞了一天&#xff09;&#xff0c;记录下&#xff0c;以备后用~ # 编译器问题 rootubuntu:/opt/easi# make -j install [ 4%] Building CXX object CMakeFiles/easi.dir/src/component/…...

循环小数(Repeating Decimals, ACM/ICPC World Finals 1990, UVa202)rust解法

输入整数a和b&#xff08;0≤a≤3000&#xff0c;1≤b≤3000&#xff09;&#xff0c;输出a/b的循环小数表示以及循环节长度。例如a5&#xff0c;b43&#xff0c;小数表示为0.(116279069767441860465)&#xff0c;循环节长度为21。 解法 就是模拟竖式除法 use std::{collecti…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...