当前位置: 首页 > news >正文

c++视觉处理----固定阈值操作:Threshold()函数,实时处理:二值化,反二值化,截断,设为零,反向设为零

固定阈值操作: Threshold()函数

cv::threshold() 函数是OpenCV中用于执行固定阈值二值化操作的函数。它可以用来将图像中的像素值根据用户定义的阈值转换为二进制值(0或255),以便进行图像分割、物体检测和特征提取等任务。

cv::threshold() 函数的基本语法如下:

double cv::threshold(cv::InputArray src,       // 输入图像cv::OutputArray dst,      // 输出图像double thresh,            // 阈值double maxval,            // 阈值以上像素的新值int type                  // 阈值类型
);

参数解释:

  • src:输入图像,应为单通道灰度图像。
  • dst:输出图像,函数将处理后的图像存储在这里。
  • thresh:阈值,用于将像素分为两类。像素值大于等于阈值将被赋予 maxval 值,小于阈值的将被赋予0。
  • maxval:阈值以上像素的新值,通常为255。
  • type:阈值类型,用于指定阈值化的方式,常见的类型包括
    • cv::THRESH_BINARY(二值化)、
    • cv::THRESH_BINARY_INV(反二值化)、
    • cv::THRESH_TRUNC(截断)、
    • cv::THRESH_TOZERO(设为零)、
    • cv::THRESH_TOZERO_INV(反向设为零)等。

以下是一个简单的示例代码,演示如何使用 cv::threshold() 函数对图像进行二值化:

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("input_image.jpg", cv::IMREAD_GRAYSCALE);if (image.empty()) {std::cerr << "Failed to open the image!" << std::endl;return -1;}// 设置阈值和阈值类型double thresholdValue = 128;double maxVal = 255;int thresholdType = cv::THRESH_BINARY; // 二值化// 应用阈值操作cv::Mat thresholdedImage;cv::threshold(image, thresholdedImage, thresholdValue, maxVal, thresholdType);// 显示处理后的图像cv::imshow("Thresholded Image", thresholdedImage);cv::waitKey(0);return 0;
}

在这里插入图片描述

使用相机实时处理:二值化,反二值化,截断,设为零,反向设为零

#include <opencv2/opencv.hpp>// 回调函数,用于处理滑动条变化
void onThresholdChange(int thresholdType, void* userdata) {cv::Mat* inputImage = static_cast<cv::Mat*>(userdata);// 初始化阈值和阈值类型int thresholdValue = 128;int maxVal = 255;// 应用不同类型的阈值操作switch (thresholdType) {case 0: // 二值化cv::threshold(*inputImage, *inputImage, thresholdValue, maxVal, cv::THRESH_BINARY);break;case 1: // 反二值化cv::threshold(*inputImage, *inputImage, thresholdValue, maxVal, cv::THRESH_BINARY_INV);break;case 2: // 截断cv::threshold(*inputImage, *inputImage, thresholdValue, maxVal, cv::THRESH_TRUNC);break;case 3: // 设为零cv::threshold(*inputImage, *inputImage, thresholdValue, maxVal, cv::THRESH_TOZERO);break;case 4: // 反向设为零cv::threshold(*inputImage, *inputImage, thresholdValue, maxVal, cv::THRESH_TOZERO_INV);break;default:break;}// 显示处理后的图像cv::imshow("Thresholded Image", *inputImage);
}int main() {cv::VideoCapture cap(0); // 打开本地相机if (!cap.isOpened()) {std::cerr << "Failed to open the camera!" << std::endl;return -1;}cv::Mat frame;cap >> frame; // 读取一帧图像// 创建窗口cv::namedWindow("Thresholded Image");// 初始化阈值类型滑动条int initialThresholdType = 0;cv::createTrackbar("Threshold Type", "Thresholded Image", &initialThresholdType, 4, onThresholdChange, &frame);// 显示原始图像cv::imshow("Thresholded Image", frame);// 循环捕获并处理图像,直到按下ESC键退出while (true) {int key = cv::waitKey(10);if (key == 27) // 按下ESC键退出循环break;cap >> frame; // 读取一帧图像// 实时更新阈值类型滑动条的值,触发回调函数cv::setTrackbarPos("Threshold Type", "Thresholded Image", initialThresholdType);// 显示原始图像// cv::imshow("Thresholded Image", frame);}// 关闭相机和窗口cap.release();cv::destroyAllWindows();return 0;
}

相关文章:

c++视觉处理----固定阈值操作:Threshold()函数,实时处理:二值化,反二值化,截断,设为零,反向设为零

固定阈值操作&#xff1a; Threshold()函数 cv::threshold() 函数是OpenCV中用于执行固定阈值二值化操作的函数。它可以用来将图像中的像素值根据用户定义的阈值转换为二进制值&#xff08;0或255&#xff09;&#xff0c;以便进行图像分割、物体检测和特征提取等任务。 cv::…...

KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(8)

接前一篇文章:KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(7) 上一回讲到了drm_internal_framebuffer_create函数中的framebuffer_check函数中的drm_get_format_info函数,讲解了该函数的第一部分暨前一部分,本文讲解后一部分。为了便于理解以及理清脉络和当前所…...

【问题解决】Ubuntu 安装 SeisSol 依赖 easi 报错解决: undefined reference to `H5free_memory‘

兼职帮客户安装 SeisSol 时问题解决&#xff0c;安装 easi 这个报错卡了很久&#xff08;搞了一天&#xff09;&#xff0c;记录下&#xff0c;以备后用~ # 编译器问题 rootubuntu:/opt/easi# make -j install [ 4%] Building CXX object CMakeFiles/easi.dir/src/component/…...

循环小数(Repeating Decimals, ACM/ICPC World Finals 1990, UVa202)rust解法

输入整数a和b&#xff08;0≤a≤3000&#xff0c;1≤b≤3000&#xff09;&#xff0c;输出a/b的循环小数表示以及循环节长度。例如a5&#xff0c;b43&#xff0c;小数表示为0.(116279069767441860465)&#xff0c;循环节长度为21。 解法 就是模拟竖式除法 use std::{collecti…...

[GAMES101]透视投影变换矩阵中为什么需要改变z值

一、问题提出 在GAMES101-Lecture4 Transformation Matrices 一节中&#xff0c;闫老师介绍了正交投影和透视投影。 在讲透视投影变换矩阵 M p e r s p → o r t h o M_{persp→ortho} Mpersp→ortho​时&#xff0c;同学们对矩阵中的z分量是变化的还是不变的有很多争论。即下…...

sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中&#xff0c;有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】&#xff0c;但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候&#xff08;无论是ID3、C4.5还是CART&#xff09;&am…...

QT 数据库表格----QSqlTableModel

将数据库数据以表格的形式转化处理的方法很多&#xff0c;但我觉得QSqlTableModel这个model应算是非常好用的&#xff1b; msql.exec("create table alldata(照片,车牌号 "",入车时间,出车时间,金额,状态,看守人员);"); //创建表格 //msql 打开的数据库即Q…...

Vue_Bug Failed to fetch extension, trying 4 more times

Bug描述&#xff1a; 启动electron时出现Failed to fetch extension, trying 4 more times的问题 解决方法&#xff1a; 去src/background.js文件中进行代码注释工作 app.on(ready, async() > {// if (isDevelopment && !process.env.IS_TEST) {// // Install V…...

缩短从需求到上线的距离:集成多种工程实践的稳定框架 | 开源日报 No.55

zeromicro/go-zero Stars: 25.7k License: MIT go-zero 是一个集成了各种工程实践的 web 和 rpc 框架。通过弹性设计保障了大并发服务端的稳定性&#xff0c;经受了充分的实战检验。 go-zero 包含极简的 API 定义和生成工具 goctl&#xff0c;可以根据定义的 api 文件一键生成…...

基于秃鹰优化的BP神经网络(分类应用) - 附代码

基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于秃鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.秃鹰优化BP神经网络3.1 BP神经网络参数设置3.2 秃鹰算法应用 4.测试结果&#xff1a;5.M…...

C++笔记之std::future的用法

C笔记之std::future的用法 code review! 文章目录 C笔记之std::future的用法1.C中std::future和std::async总是一起出现吗&#xff1f;2.主要特点和用法3.一个完整的例子4.std::future 存放的是一个结果吗&#xff1f;5.cppreference——std::future 1.C中std::future和std::a…...

openssl学习——消息认证码原理

消息认证码原理 消息认证码&#xff08;Message Authentication Code, MAC&#xff09;是一种技术&#xff0c;它的原理是通过对消息和密钥进行特定的处理&#xff0c;生成一个固定长度的数据&#xff0c;这个数据就是消息认证码&#xff08;MAC&#xff09;。这个过程可以看作…...

Netty使用SslHandler实现加密通信-单向认证篇

引入依赖 <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.100.Final</version> </dependency>生成keystore.jks文件 keytool -genkeypair -alias your_alias -keyalg RSA -keysto…...

Jetpack:007-Kotlin中的Button

文章目录 1. 概念介绍2. 使用方法2.1 Button2.2 IconButton2.3 ElevatedButton2.4 OutlinedButton2.5 TextButton2.6 FloatingActionButton 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack中输入框相关的内容&#xff0c;本章回中将要介绍 Button。闲话休提&#xff0…...

opencv图形绘制2

目录 制作宣传语&#xff08;中文&#xff09; 制作宣传语&#xff08;英文&#xff09; 绘制标记 鼠标交互绘制十字线 鼠标交互绘制图形 鼠标交互制作几何画板 滚动条控制 鼠标事件练习 制作宣传语&#xff08;中文&#xff09; import cv2 import numpy as np from …...

“华为杯”研究生数学建模竞赛2019年-【华为杯】A题:无线智能传播模型(附优秀论文及Pyhton代码实现)(续)

目录 六、问题三的分析与建模 6.1 问题三的分析 6.2 问题三的建模 6.2.1 模型介绍...

爬虫 | 正则、Xpath、BeautifulSoup示例学习

文章目录 &#x1f4da;import requests&#x1f4da;import re&#x1f4da;from lxml import etree&#x1f4da;from bs4 import BeautifulSoup&#x1f4da;小结 契机是课程项目需要爬取一份数据&#xff0c;于是在CSDN搜了搜相关的教程。在博主【朦胧的雨梦】主页学到很多…...

nginx的location的优先级和匹配方式

nginx的location的优先级和匹配方式 在http模块中有server&#xff0c;server模块中有location&#xff0c;location匹配的是uri 在一个server中&#xff0c;会有多个location&#xff0c;如何来确定匹配哪个location niginx的正则表达式 ^ 字符串的起始位置 $ 字符串的…...

深入了解Spring Boot Actuator

文章目录 引言什么是ActuatorActuator的底层技术和原理端点自动配置端点请求处理端点数据提供端点数据暴露 如何使用Actuator添加依赖访问端点自定义端点 实例演示结论 引言 Spring Boot Actuator是一个非常强大且广泛使用的模块&#xff0c;它为Spring Boot应用程序提供了一套…...

【SQL】NodeJs 连接 MySql 、MySql 常见语句

1.安装 mysql npm install mysql 2.引入MySql import mysql from mysql 3.连接MySql const connection mysql.createConnection({host: yourServerip,user: yourUsername,password: yourPassword,database: yourDatabase })connection.connect(err > {if (err) {console…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目&#xff0c;核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容&#xff0c;附学习方向和应试技巧&#xff1a; 一、施工组织与进度管理 核心目标&#xff1a; 规…...

HTTPS证书一年多少钱?

HTTPS证书作为保障网站数据传输安全的重要工具&#xff0c;成为众多网站运营者的必备选择。然而&#xff0c;面对市场上种类繁多的HTTPS证书&#xff0c;其一年费用究竟是多少&#xff0c;又受哪些因素影响呢&#xff1f; 首先&#xff0c;HTTPS证书通常在PinTrust这样的专业平…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中&#xff0c;Utility-First (功能优先) CSS 框架已经成为主流。其中&#xff0c;Tailwind CSS 无疑是市场的领导者和标杆。然而&#xff0c;一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...