当前位置: 首页 > news >正文

sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?
在这里插入图片描述

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点
关于特征为连续属性时CART决策树如何处理:二分法——先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客。
在这里插入图片描述

sklearn里的决策树怎么处理类别特征的

答案是——不处理。在sklearn实现的CART树中,是用同一种方式去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征
在这里插入图片描述
在这里插入图片描述
可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。
其实理论上来说,XGB是可以用离散变量的,毕竟增益只和结点上的样本有关,特征只是决定树的结构:
在这里插入图片描述

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。
另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关文章:

sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART)&am…...

QT 数据库表格----QSqlTableModel

将数据库数据以表格的形式转化处理的方法很多,但我觉得QSqlTableModel这个model应算是非常好用的; msql.exec("create table alldata(照片,车牌号 "",入车时间,出车时间,金额,状态,看守人员);"); //创建表格 //msql 打开的数据库即Q…...

Vue_Bug Failed to fetch extension, trying 4 more times

Bug描述: 启动electron时出现Failed to fetch extension, trying 4 more times的问题 解决方法: 去src/background.js文件中进行代码注释工作 app.on(ready, async() > {// if (isDevelopment && !process.env.IS_TEST) {// // Install V…...

缩短从需求到上线的距离:集成多种工程实践的稳定框架 | 开源日报 No.55

zeromicro/go-zero Stars: 25.7k License: MIT go-zero 是一个集成了各种工程实践的 web 和 rpc 框架。通过弹性设计保障了大并发服务端的稳定性,经受了充分的实战检验。 go-zero 包含极简的 API 定义和生成工具 goctl,可以根据定义的 api 文件一键生成…...

基于秃鹰优化的BP神经网络(分类应用) - 附代码

基于秃鹰优化的BP神经网络(分类应用) - 附代码 文章目录 基于秃鹰优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.秃鹰优化BP神经网络3.1 BP神经网络参数设置3.2 秃鹰算法应用 4.测试结果:5.M…...

C++笔记之std::future的用法

C笔记之std::future的用法 code review! 文章目录 C笔记之std::future的用法1.C中std::future和std::async总是一起出现吗?2.主要特点和用法3.一个完整的例子4.std::future 存放的是一个结果吗?5.cppreference——std::future 1.C中std::future和std::a…...

openssl学习——消息认证码原理

消息认证码原理 消息认证码(Message Authentication Code, MAC)是一种技术,它的原理是通过对消息和密钥进行特定的处理,生成一个固定长度的数据,这个数据就是消息认证码(MAC)。这个过程可以看作…...

Netty使用SslHandler实现加密通信-单向认证篇

引入依赖 <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.100.Final</version> </dependency>生成keystore.jks文件 keytool -genkeypair -alias your_alias -keyalg RSA -keysto…...

Jetpack:007-Kotlin中的Button

文章目录 1. 概念介绍2. 使用方法2.1 Button2.2 IconButton2.3 ElevatedButton2.4 OutlinedButton2.5 TextButton2.6 FloatingActionButton 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack中输入框相关的内容&#xff0c;本章回中将要介绍 Button。闲话休提&#xff0…...

opencv图形绘制2

目录 制作宣传语&#xff08;中文&#xff09; 制作宣传语&#xff08;英文&#xff09; 绘制标记 鼠标交互绘制十字线 鼠标交互绘制图形 鼠标交互制作几何画板 滚动条控制 鼠标事件练习 制作宣传语&#xff08;中文&#xff09; import cv2 import numpy as np from …...

“华为杯”研究生数学建模竞赛2019年-【华为杯】A题:无线智能传播模型(附优秀论文及Pyhton代码实现)(续)

目录 六、问题三的分析与建模 6.1 问题三的分析 6.2 问题三的建模 6.2.1 模型介绍...

爬虫 | 正则、Xpath、BeautifulSoup示例学习

文章目录 &#x1f4da;import requests&#x1f4da;import re&#x1f4da;from lxml import etree&#x1f4da;from bs4 import BeautifulSoup&#x1f4da;小结 契机是课程项目需要爬取一份数据&#xff0c;于是在CSDN搜了搜相关的教程。在博主【朦胧的雨梦】主页学到很多…...

nginx的location的优先级和匹配方式

nginx的location的优先级和匹配方式 在http模块中有server&#xff0c;server模块中有location&#xff0c;location匹配的是uri 在一个server中&#xff0c;会有多个location&#xff0c;如何来确定匹配哪个location niginx的正则表达式 ^ 字符串的起始位置 $ 字符串的…...

深入了解Spring Boot Actuator

文章目录 引言什么是ActuatorActuator的底层技术和原理端点自动配置端点请求处理端点数据提供端点数据暴露 如何使用Actuator添加依赖访问端点自定义端点 实例演示结论 引言 Spring Boot Actuator是一个非常强大且广泛使用的模块&#xff0c;它为Spring Boot应用程序提供了一套…...

【SQL】NodeJs 连接 MySql 、MySql 常见语句

1.安装 mysql npm install mysql 2.引入MySql import mysql from mysql 3.连接MySql const connection mysql.createConnection({host: yourServerip,user: yourUsername,password: yourPassword,database: yourDatabase })connection.connect(err > {if (err) {console…...

SSH 基础学习使用

什么是SSH 1.SSH SSH&#xff08;Secure Shell&#xff09; 是较可靠&#xff0c;专为远程登录会话和其他网络服务提供安全性的协议&#xff0c;利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。 实际应用中&#xff0c;主要用于保证远程登录和远程通信的安全&#…...

JavaFX: 使用本地openjfx包

JavaFX: 使用本地openjfx包 1、注释配置2、下载openjfx包3、导入openjfx的jar包 1、注释配置 build.gradle配置注释&#xff1a; 2、下载openjfx包 下载javaFx地址&#xff1a;https://gluonhq.com/products/javafx/ 3、导入openjfx的jar包...

【HCIA】静态路由综合实验

实验要求&#xff1a; 1、R6为ISP&#xff0c;接口IP地址均为公有地址&#xff0c;该设备只能配置IP地址之后不能再对其进行任何配置 2、R1-R5为局域网&#xff0c;私有IP地址192.168.1.0/24&#xff0c;请合理分配 3、R1、R2、R4&#xff0c;各有两个环回IP地址;R5,R6各有一…...

Django框架集成Celery异步-【2】:django集成celery,拿来即用,可用操作django的orm等功能

一、项目结构和依赖 study_celery | --user |-- models.py |--views.py |--urls.py |--celery_task |--__init__.py |--async_task.py |-- celery.py | --check_task.py | --config.py | --scheduler_task.py | --study_celery | --settings.py | --manage.py 依赖&#xff1a…...

获取本地缓存数据修改后,本地缓存中的值也修改问题

获取本地缓存数据修改后&#xff0c;本地缓存中的值也修改问题 JAVA缓存&#xff0c;获取数据后修改&#xff0c;缓存中的数值也会修改&#xff0c;解决方法是创建新的对象再修改值比如使用BeanUtils.copyProperties()方法。如果值是List&#xff0c;可以使用两种方法解决循环…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...