【手写数字识别】GPU训练版本
SVM
Adaboost
Bagging
完整代码 I
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torchvision import transforms, datasets
import matplotlib.pyplot as plt# 超参数
batch_size = 64
num_epochs = 10# 数据集准备
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data/demo2', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data/demo2', train=False, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# SVM 模型 (在GPU上训练)
class SVMModel(torch.nn.Module):def __init__(self):super(SVMModel, self).__init__()self.flatten = torch.nn.Flatten() self.linear = torch.nn.Linear(28 * 28, 10) def forward(self, x):x = self.flatten(x) return self.linear(x)svm_model = SVMModel().cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(svm_model.parameters(), lr=0.01)# 训练和评估
svm_train_losses = []
svm_test_accuracies = []for epoch in range(num_epochs):for batch_idx, (data, labels) in enumerate(train_loader):data, labels = data.cuda(), labels.cuda()outputs = svm_model(data)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()svm_train_losses.append(loss.item())with torch.no_grad():test_accuracy = 0total = 0for batch_idx, (data, labels) in enumerate(test_loader):data, labels = data.cuda(), labels.cuda()outputs = svm_model(data)_, predicted = torch.max(outputs, 1)test_accuracy += torch.sum(predicted == labels).item()total += labels.size(0)accuracy = (test_accuracy / total) * 100svm_test_accuracies.append(accuracy)print('SVM - Epoch [{}/{}], Test Accuracy: {:.2f}%'.format(epoch + 1, num_epochs, accuracy))# Adaboost 模型 (在GPU上训练)
class AdaboostModel(torch.nn.Module):def __init__(self, num_estimators):super(AdaboostModel, self).__init__()self.num_estimators = num_estimatorsself.models = torch.nn.ModuleList([SVMModel() for _ in range(num_estimators)])def forward(self, x):outputs = torch.zeros(x.size(0), 10).cuda()for i in range(self.num_estimators):outputs += self.models[i](x)return outputsadaboost_model = AdaboostModel(num_estimators=50).cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(adaboost_model.parameters(), lr=0.01)# 训练和评估
adaboost_train_losses = []
adaboost_test_accuracies = []for epoch in range(num_epochs):for batch_idx, (data, labels) in enumerate(train_loader):data, labels = data.cuda(), labels.cuda()outputs = adaboost_model(data)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()adaboost_train_losses.append(loss.item())with torch.no_grad():test_accuracy = 0total = 0for batch_idx, (data, labels) in enumerate(test_loader):data, labels = data.cuda(), labels.cuda()outputs = adaboost_model(data)_, predicted = torch.max(outputs, 1)test_accuracy += torch.sum(predicted == labels).item()total += labels.size(0)accuracy = (test_accuracy / total) * 100adaboost_test_accuracies.append(accuracy)print('Adaboost - Epoch [{}/{}], Test Accuracy: {:.2f}%'.format(epoch + 1, num_epochs, accuracy))# Bagging 模型 (在GPU上训练)
class BaggingModel(torch.nn.Module):def __init__(self, num_estimators):super(BaggingModel, self).__init__()self.num_estimators = num_estimatorsself.models = torch.nn.ModuleList([SVMModel() for _ in range(num_estimators)])def forward(self, x):outputs = torch.zeros(x.size(0), 10).cuda()for i in range(self.num_estimators):outputs += self.models[i](x)return outputsbagging_model = BaggingModel(num_estimators=50).cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(bagging_model.parameters(), lr=0.01)# 训练和评估
bagging_train_losses = []
bagging_test_accuracies = []for epoch in range(num_epochs):for batch_idx, (data, labels) in enumerate(train_loader):data, labels = data.cuda(), labels.cuda()outputs = bagging_model(data)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()bagging_train_losses.append(loss.item())with torch.no_grad():test_accuracy = 0total = 0for batch_idx, (data, labels) in enumerate(test_loader):data, labels = data.cuda(), labels.cuda()outputs = bagging_model(data)_, predicted = torch.max(outputs, 1)test_accuracy += torch.sum(predicted == labels).item()total += labels.size(0)accuracy = (test_accuracy / total) * 100bagging_test_accuracies.append(accuracy)print('Bagging - Epoch [{}/{}], Test Accuracy: {:.2f}%'.format(epoch + 1, num_epochs, accuracy))# 可视化
plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)
plt.plot(svm_train_losses, label='SVM Train Loss')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.legend()plt.subplot(1, 2, 2)
plt.plot(svm_test_accuracies, label='SVM Test Accuracy', color='orange')
plt.plot(adaboost_test_accuracies, label='Adaboost Test Accuracy', color='green')
plt.plot(bagging_test_accuracies, label='Bagging Test Accuracy', color='blue')
plt.xlabel('Epochs')
plt.ylabel('Accuracy (%)')
plt.legend()plt.show()


从gpu使用率看:

完整代码 II
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torchvision import transforms, datasets
import matplotlib.pyplot as plt# 超参数
batch_size = 64
num_epochs = 10# 数据集准备
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data/demo2', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data/demo2', train=False, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# SVM 模型定义
class SVMModel(torch.nn.Module):def __init__(self):super(SVMModel, self).__init__()self.flatten = torch.nn.Flatten()self.linear = torch.nn.Linear(28 * 28, 10)def forward(self, x):x = self.flatten(x)return self.linear(x)# Adaboost 模型定义
class AdaboostModel(torch.nn.Module):def __init__(self, num_estimators):super(AdaboostModel, self).__init__()self.num_estimators = num_estimatorsself.models = torch.nn.ModuleList([SVMModel() for _ in range(num_estimators)])def forward(self, x):outputs = torch.zeros(x.size(0), 10).cuda()for i in range(self.num_estimators):outputs += self.models[i](x)return outputs# Bagging 模型定义
class BaggingModel(torch.nn.Module):def __init__(self, num_estimators):super(BaggingModel, self).__init__()self.num_estimators = num_estimatorsself.models = torch.nn.ModuleList([SVMModel() for _ in range(num_estimators)])def forward(self, x):outputs = torch.zeros(x.size(0), 10).cuda()for i in range(self.num_estimators):outputs += self.models[i](x)return outputs# 训练函数
def train_model(model, train_loader, test_loader, num_epochs, optimizer, criterion):train_losses = []test_accuracies = []best_accuracy = 0for epoch in range(num_epochs):model.train()for batch_idx, (data, labels) in enumerate(train_loader):data, labels = data.cuda(), labels.cuda()outputs = model(data)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()train_losses.append(loss.item())model.eval()with torch.no_grad():test_accuracy = 0total = 0for batch_idx, (data, labels) in enumerate(test_loader):data, labels = data.cuda(), labels.cuda()outputs = model(data)_, predicted = torch.max(outputs, 1)test_accuracy += torch.sum(predicted == labels).item()total += labels.size(0)accuracy = (test_accuracy / total) * 100test_accuracies.append(accuracy)# 更新最佳准确率和最佳模型if accuracy > best_accuracy:best_accuracy = accuracybest_model = model.state_dict()print('Epoch [{}/{}], Test Accuracy: {:.2f}%'.format(epoch + 1, num_epochs, accuracy))# 返回训练过程中的损失、准确率和最佳模型的状态字典return train_losses, test_accuracies, best_model# 创建SVM模型、Adaboost模型和Bagging模型
svm_model = SVMModel().cuda()
adaboost_model = AdaboostModel(num_estimators=50).cuda()
bagging_model = BaggingModel(num_estimators=50).cuda()# 损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
svm_optimizer = torch.optim.SGD(svm_model.parameters(), lr=0.01)
adaboost_optimizer = torch.optim.SGD(adaboost_model.parameters(), lr=0.01)
bagging_optimizer = torch.optim.SGD(bagging_model.parameters(), lr=0.01)# 训练SVM模型
print('训练SVM模型:')
svm_train_losses, svm_test_accuracies, svm_best_model = train_model(svm_model, train_loader, test_loader, num_epochs,svm_optimizer, criterion)# 训练Adaboost模型
print('训练Adaboost模型:')
adaboost_train_losses, adaboost_test_accuracies, adaboost_best_model = train_model(adaboost_model, train_loader,test_loader, num_epochs,adaboost_optimizer, criterion)# 训练Bagging模型
print('训练Bagging模型:')
bagging_train_losses, bagging_test_accuracies, bagging_best_model = train_model(bagging_model, train_loader,test_loader, num_epochs,bagging_optimizer, criterion)# SVM、Adaboost和Bagging三个模型在测试集上的最佳准确率
print('SVM Best Test Accuracy: {:.2f}%'.format(max(svm_test_accuracies)))
print('Adaboost Best Test Accuracy: {:.2f}%'.format(max(adaboost_test_accuracies)))
print('Bagging Best Test Accuracy: {:.2f}%'.format(max(bagging_test_accuracies)))# 三个模型的准确率最好的放在一起进行可视化对比
plt.figure(figsize=(8, 6))
plt.plot(svm_test_accuracies, label='SVM Test Accuracy', color='orange')
plt.plot(adaboost_test_accuracies, label='Adaboost Test Accuracy', color='green')
plt.plot(bagging_test_accuracies, label='Bagging Test Accuracy', color='blue')
plt.xlabel('Epochs')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.show()


相关文章:
【手写数字识别】GPU训练版本
SVM Adaboost Bagging 完整代码 I import torch import torch.nn.functional as F from torch.utils.data import DataLoader, TensorDataset from torchvision import transforms, datasets import matplotlib.pyplot as plt# 超参数 batch_size 64 num_epochs 10# 数据…...
c#-特殊的集合
位数组 可观察的集合 private ObservableCollection<string> strList new ObservableCollection<string>();// Start is called before the first frame updatevoid Start(){strList.CollectionChanged Change;strList.Add("ssss");strList.Add("…...
Android 使用 eChart 设置标线
echart使用标线 Android部分: import android.webkit.WebView; import com.jianqu.plasmasterilizer.R; import com.jianqu.plasmasterilizer.utils.DisplayUtils; import com.jianqu.plasmasterilizer.utils.TimerUtil; import java.util.ArrayList; import java.…...
红队专题-Cobalt strike 4.x - Beacon重构
红队专题 招募六边形战士队员重构后 Beacon 适配的功能windows平台linux和mac平台C2profile 重构思路跨平台功能免杀代码部分sysinfo包packet包config.go命令的执行shell、run、executepowershell powerpick命令powershell-importexecute-assembly 堆内存加密字符集 招募六边形…...
一文掌握 Go 文件的写入操作
前言 通过案例展示如何读取文件里的内容。本文接着上篇文章的内容,介绍文件的写入操作。 File.Write、File.WriteString、File.WriteAt File.Write(b []byte) (n int, err error) 直接操作磁盘往文件里写入数据,写入单位为字节。 b 参数:…...
小程序入门及案例展示
目录 一、小程序简介 1.1 为什么要使用小程序 1.2 小程序可以干什么 二、前期准备 2.1 申请账号 2.2 开发工具下载与安装 三、电商案例演示 四、入门案例 4.1 项目结构解析 4.2 基础操作及语法 4.3 模拟器 4.4 案例演示 4.4.1 新建页面 4.4.2 头部样式设置 4.4.…...
linux 安装python django pip 遇到的问题
Python解决SSL不可用问题 解决方案: 首先要明白python版本需要和openssl的版本需要相对匹配的,在Python3.7之后的版本,依赖的openssl,必须要是1.1或者1.0.2之后的版本,或者安装了2.6.4之后的libressl,linux…...
【问题解决】【爬虫】抓包工具charles与pycharm发送https请求冲突问题
问题: 开启charles抓包,运行pycharm发送https请求报以下错误 解决: 修改python代码,发送请求时添加verify false,此时charles也能抓取到pycharm发送的请求 2. 关闭charles抓包,取消勾选window proxy...
Hadoop3教程(二):HDFS的定义及概述
文章目录 (40)HDFS产生的背景和定义(41)HDFS的优缺点(42)HDFS组成架构(43)HDFS文件块大小(面试重点)参考文献 (40)HDFS产生的背景和定…...
【物联网+JAVA 】智慧工地源码
一、什么是智慧工地? 工地本身不拥有智慧,工地的运作是依赖于人的智慧。工地信息化技术,能够减少对人的依赖,使工地拥有智慧。 智慧工地,就是立足于“智慧城市”和“互联网”,采用云计算、大数据和物联网…...
001数据安全传输-多端协议传输平台:Openssl安装和配置 - EVP代码测试
001数据安全传输-多端协议传输平台:Openssl安装和配置 - EVP代码测试 文章目录 001数据安全传输-多端协议传输平台:Openssl安装和配置 - EVP代码测试1. 安装1.1 windows下安装openssl1.2 Linux下安装OpenSSL 2. VS中使用openssl3. 测试 1. 安装 1.1 win…...
关于小编入坑第512天
机缘 最初成为创作者的初心:总结记录整个学习前端的历程 日常学习过程中的记录: 先思考,整个程序逻辑流程是否出现问题 再文档,根据相关文档了解源头,学会看懂文档,是一个锻炼自学前端能力的关键一步 …...
VS2015编译Qt工程发生MSB4018错误完整解决过程
一、错误产生环境 操作系统:Windows10 开发工具:VS2015企业版 Qt版本:Qt5.7.1 64位 二、错误内容 MSB4018 “VCMessage”任务意外失败。 System.FormatException: 索引(从零开始)必须大于或等于零,且小于参数列表的大小。 …...
如何使用JMeter测试导入接口/导出接口
今天一上班,被开发问了一个问题:JMeter调试接口,文件导入接口怎么老是不通?还有导出文件接口,不知道文件导到哪里去了? 我一听,这不是JMeter做接口测试经常遇到的嘛,但是一时半会又…...
[入门一]C# webApi创建、与发布、部署、api调用
一.创建web api项目 1.1、项目创建 MVC架构的话,它会有view-model-control三层,在web api中它的前端和后端是分离的,所以只在项目中存在model-control两层 1.2、修改路由 打开App_Start文件夹下,WebApiConfig.cs ,修改路由&…...
关于Vue+webpack使用unocss编写CSS,打包后CSS没加前缀
关于Vuewebpack使用unocss编写CSS,打包后CSS没加前缀,封装了一个插件去解决了这个问题 unocss-postcss-webpack-plugin unocss在vite中使用配置,关于unocss在vite中使用,自行查阅官网 https://unocss.dev/integrations/vite ,vi…...
软件工程与计算总结(十一)人机交互设计
目录 编辑 一.引例 二.目标 三.人类因素 1.精神模型 2.差异性 四.计算机因素 1.可视化设计 2.常见界面类型 五.人机交互设计的交互性 1.导航 2.反馈 3.设计原则 六.设计过程 1.基本过程 2.界面原型化 一.引例 无论软件功能多么出色,亦或内部的构造…...
Jmeter组件执行顺序与作用域
一、Jmeter重要组件: 1)配置元件---Config Element: 用于初始化默认值和变量,以便后续采样器使用。配置元件大其作用域的初始阶段处理,配置元件仅对其所在的测试树分支有效,如,在同一个作用域的…...
第一天商城项目
复盘 1.maven高级部分聚合和继承 maven聚合工程(深度剖析)_一宿君的博客-CSDN博客 2.yml配置文件 mybatis mybatis: mapper-locations: classpath:mappers/*mapper.xml mapper-locations:这是一个子键,用于指定MyBatis映射文件(Mapper XML…...
C++笔记之通用多态函数包装器std::function
C笔记之通用多态函数包装器std::function code review! 文章目录 C笔记之通用多态函数包装器std::function1.存储自由函数,lambda,std::bind 调用的结果2.存储到成员的调用3.存储到函数对象四.基本语法五.使用std::function定义函数对象六.使用std::fu…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
