SparkCore编程RDD
RDD概述
中文名为弹性分布式数据集,是数据处理基本单位。代表一个弹性的,不可变,可分区,里面的数据可并行计算的集合。
RDD和Hadoop MR 的区别:
- RDD是先明确数据处理流程,数据在行动算子执行前实际上并未被修改
- MR本质上是摸石头过河,每一步操作时,数据本体已经被修改了,无法恢复。
RDD特性:
- 一组分区:标记数据是哪个分区的
- 一个计算每个分区的函数
- RDD之间的依赖关系
- 一个分区器:即RDD的分片函数
- 一个优先列表:移动数据不如移动计算
Spark编程
RDD的创建
- 使用IDEA创建一个spark项目
- 添加spark-core_2.12依赖,版本3.3.1
- 在setting-plugins搜索Scala插件,方便查询Scala代码
- 如果代码出现winutils找不到异常时,需要配置一下windows对于Hadoop的依赖
- 开始编程
- 创建RDD_init的class文件,定义main方法
new JavaSparkContext(), 设置SparkConf().setMaster("local[*]").setAppName("rdd");得到sc- sc获取RDD的方法
- textFile(文件路径)
- parallelize(list集合)
分区
为了能够看到分区的情况,不使用collect收集,而是采用saveAsTextFile方法来看并行操作的具体情形。local[2]代表并行度,也会影响文件的数量,这个是分区数的上限。也可以通过parallelize(list, 分区数)方法来控制分区数量,而不影响分区的上限。
内存数据分区策略:如果数据个数无法被分区数整除,多出来的数据优先分配给后面的分区。
def positions()={val start = ((下标*数据个数)/分区数).toIntval end = ((下标+1)* 数据个数/ 分区数).toInt
}
从集合获取数据时,负载均衡,尽量保证每个分区的数据数量是一致的,后面的分区的数据会比前面的多。
MR和spark的切分区别:
- MR希望每个任务跑到数据量级尽量多,因为MR底层是单线程多进程的,并发没有那么方便。
- spark希望跑到任务尽量多,即负载均衡,并发量高,因为spark底层是多进程多线程的。
文件数据分区策略:分区数量最低为2,最高为环境CPU数量。分区数量根据文件大小来计算得出,跟MR切片规则很类似。大致是这样:
- goalS ize = 文件大小(字节) / 分区数量,最小为1
- 分区数量 = 文件大小 / goalSize
相关文章:
SparkCore编程RDD
RDD概述 中文名为弹性分布式数据集,是数据处理基本单位。代表一个弹性的,不可变,可分区,里面的数据可并行计算的集合。 RDD和Hadoop MR 的区别: RDD是先明确数据处理流程,数据在行动算子执行前实际上并未…...
VBA技术资料MF69:添加和删除工作表中的分页符
我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...
数字技术助力智慧公厕,让公厕变身为全新创新应用
在如今数字化的时代,数字技术的集成应用已经渗透到了生活的方方面面。其中一个令人瞩目的领域就是智慧公厕。以前只是简单的厕所,如今借助数字技术的力量,智慧公厕变得功能强大、智能高效。接下来,我们将以智慧公厕源头领航厂家广…...
electron 升级 v22 遇到问题
Electron 漏洞 https://mp.weixin.qq.com/s/5LpSJb_5uV8EIDOl3fz9Tw 由于 23以上不在支持win 7 8 8.1 所以我选择安装 v22.3.24 electron 22.3.24 node-sass 6.0.1 sass-loader 10.4.1 对应的版本 npm i node-sass6.0.1 --sass_binary_sitehttps://npm.taobao.org/mirrors…...
跟我学c++中级篇——Pimpl
一、前向声明 前向声明或者前置声明(forward declaration),这个在c中用得还是比较多的。一般的框架或者库中,经常可以看到在一个类的前面声明了一个类,类似下面这样: class useclass; class mycall{...useclass *us; };前向声明…...
[补题记录] Atcoder Beginner Contest 295(E)
URL:https://atcoder.jp/contests/abc295 目录 E Problem/题意 Thought/思路 Code/代码 E Problem/题意 给定长度为 N 的数组 A。进行如下操作: 若 Ai 0,将 Ai 等概率地变为 1 ~ M 中的任意一个数;对 A 排序; …...
解决git在window11操作很慢,占用很大cpu的问题
【git在window11操作很慢,占用很大cpu,最后也执行失败】 在谷歌输入:git very slow in window 11。通过下面链接终于找到了解决方案: https://www.reddit.com/r/vscode/comments/sulebx/slow_git_in_wsl_after_updating_to_window…...
C++智能指针(二)——weak_ptr初探
文章目录 1. shared_ptr 存在的问题2. 使用weak_ptr2.1 初始化 weak_ptr2.2 访问数据 3. 附录4. 参考文献 1. shared_ptr 存在的问题 与 shared_ptr 的引入要解决普通指针存在的一些问题一样,weak_ptr 的引入,也是因为 shared_ptr 本身在某些情况下&…...
540 - Team Queue (UVA)
题目链接如下: Online Judge 对比刘汝佳的代码,我没有用queue来排整个队伍,因为那样的话遍历整个队伍太麻烦,vector比较方便。但vector删除元素比较耗时,所以就不删了,仅仅用pivot来指代目前队伍的开始。…...
投资组合之如何估值
文章目录 如何估值一、PE估值法1、PE估值法的定义2、参考标准(1)常规标准:25倍合理市盈率。(2)同行业对比。(3)跟历史市盈率相比。 3、PE估值法的适用范围4、PE估值法的优势5、PE估值法的劣势&a…...
2024届通信工程保研经验分享(预推免入营即offer)
2024届通信工程保研经验分享(预推免入营即offer) BackGround夏令营情况:预推免情况: BackGround 本科院校:末九 专业:通信工程 rank:3/123(预推免绩点排名)࿰…...
L2-025 分而治之 - java
L2-025 分而治之 时间限制 600 ms 内存限制 64 MB 题目描述: 分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若…...
Python+高光谱数据预处理-机器学习-深度学习-图像分类-参数回归
涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。重点解释高光谱数据处理所涉及的基本概念和理论,旨在帮助学员深入理解科学原理。结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题…...
免费 AI 编程助手 Amazon CodeWhisperer 体验
文章作者:文章作者:米菲爸爸 2022 年 6 月 23 亚马逊云科技就已经推出了 Amazon CodeWhisperer(预览版)。经过不到一年的测试和 AIGC的飓风在 2023 年 4 月 18 日实时 AI 编程助手 Amazon CodeWhisperer正式可用 Amazon CodeWhis…...
【Linux】从零开始学习Linux基本指令(一)
🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:Linux入门 🔥该文章主要了解Linux操作系统下的基本指令。 目录: ⌛️指令的理解⏳目录和文件的理解⏳一些常见指令✉…...
Java GC 算法
一、概述 理解Java虚拟机垃圾回收机制的底层原理,是成为一个高级Java开发者的基本功。本文从底层的垃圾回收算法开始,着重去阐释不同垃圾回收器在算法设计和实现时的一些技术细节,去探索「why」这一部分,通过对比不同的垃圾回收算…...
vue3 v-html中使用v-viewer
安装:npm install v-viewernext 在main.js中配置 import “viewerjs/dist/viewer.css”; import Viewer from “v-viewer”; app.use(Viewer, { Options: { inline: true, //默认值:false。启用内联模式。 button: true, //在查看器的右上角显示按钮。 …...
Leetcode算法解析——查找总价格为目标值的两个商品
1. 题目链接:LCR 179. 查找总价格为目标值的两个商品 2. 题目描述: 商品价格按照升序记录于数组 price。请在购物车中找到两个商品的价格总和刚好是 target。若存在多种情况,返回任一结果即可。 示例 1: 输入:price …...
unity游戏开发引擎unity3D开发
Unity(也被称为Unity3D)是一款强大的跨平台游戏引擎,用于开发2D和3D游戏,以及其他交互式应用程序。以下是Unity游戏开发的一般步骤: 安装和设置Unity: 首先,您需要下载并安装Unity。确保选择适…...
iptables
目录 iptables 匹配规则:由上到下依次匹配,一旦匹配不再匹配 参数 知识点 REJECT与DROP REJECT与DROP的区别 当使用的时REJECT时,客户端访问迅速返回的值是拒绝连接 当使用的是DROP时,返回的时连接超时 REJECT与drop适用…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
