当前位置: 首页 > news >正文

TensorFlow入门(二十、损失函数)

损失函数

        损失函数用真实值与预测值的距离指导模型的收敛方向,是网络学习质量的关键。不管是什么样的网络结构,如果使用的损失函数不正确,最终训练出的模型一定是不正确的。常见的两类损失函数为:①均值平方差②交叉熵

均值平方差

        均值平方差(Mean Squared Error,MSE),也称"均方误差",在神经网络中主要用于表达预测值与真实值之间的差异,针对的是回归问题。其数学计算公式如下:

                                

        可以看出,均值平方差是对每一个真实值与预测值相减后的差的平方取平均值。在具体模型中,它的值越小,表明模型越好。除此之外,类似的损失算法还有均方根误差RMSE(即将MSE开平方)、平均绝对值误差MAD(对一个真实值与预测值相减的绝对值取平均值)等。

        注意 : 在神经网络计算时,预测值要和真实值控制在同样的数据分布内,例如将预测值经过Sigmoid激活函数得到的值控制在0~1之间,那么真实值也需要归一化在0~1之间。这样,进行loss计算时才会有较好的效果。

        在TensorFlow中,没有提供单独的MSE函数。由于公式简单,可以自己组合,例如:

MSE = tf.reduce_mean(tf.pow(tf.sub(logits,outputs),2.0))

        其中,logits代表标签值,即真实值,outputs代表预测值。

        同理,均方根误差RMSE和平均绝对值误差MAD也可以手动组合,例如:

RMSE = tf.sqrt(tf.reduce_mean(tf.pow(tf.sub(logits,outputs),2.0)))
MAD = tf.reduce_mean(tf.complex_abs(tf.sub(logits,outputs)))

交叉熵

        交叉熵(crossentropy),一般针对的是分类问题,主要用于预测输入样本属于某一类的概率。其数学计算公式如下:

                        

        其中y代表真实值分类(0或1),a代表预测值。

        注意 : 用于计算的a也是通过分布统一化处理的(或者是经过Sigmoid函数激活的),取值范围在0~1之间。如果真实值和预测值都是1,前面一项y*ln(a)就是1*ln(1)等于0,后一项(1-y)*ln(1-a)也就是0*ln(0)等于0,loss为0,反之loss函数为其他数。

        在TensorFlow中常见的交叉熵函数有:

                ①Sigmoid交叉熵

                        Sigmoid交叉熵,即tf.nn.sigmoid_cross_entropy_with_logits(_sentinel = None,labels = None,logits = None,name = None),该函数对logits计算sigmoid的交叉熵。logits是神经网络模型中的w*x矩阵,也是神经网络最后一层的输出,还没有经过sigmoid激活函数计算,而labels是实际的标签值,它的shape和logits相同。

                        具体计算公式如下:

                

                ②softmax交叉熵

                        softmax交叉熵,即tf.nn.softmax_cross_entropy_with_logits(logits,labels,name = None),该函数的参数logits和labels,与Sigmoid交叉熵函数的一样。函数的计算过程一共分为两步:

                                ①将logits通过softmax计算转换成概率,公式如下:

                                        

                                ②计算交叉熵损失,把softmax的输出向量[y1,y2,y3...]和样本的实际标签做一个交叉熵,公式如下:

                                        

                                        其中,y'i指代实际的标签中第i个的值,yi是上一步softmax的输出向量[y1,y2,y3...]中,第i个元素的值。非常明显,预测越准确,计算得出的值越小,最后再通过求平均值,得到最终的loss。注意:该函数的返回值是一个向量,不是一个数。

                ③sparse交叉熵

                        sparse交叉熵,即tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels,name = None),该函数用于计算logits和labels之间的稀疏softmax交叉熵。计算流程和softmax交叉熵一样,区别在于sparse交叉熵的样本真实值与预测结果不需要one-hot编码,但是要求分类的个数一定要从0开始。比如,如果分两类,标签的预测值只有0和1两个数。如果是五类,预测值有0,1,2,3,4共五个数。

                ④加权Sigmoid交叉熵

                        加权Sigmoid交叉熵,即tf.nn.weighted_cross_entropy_with_logits(targets,logits,pos_weight,name = None),该函数用于计算加权交叉熵。计算方式与Sigmoid交叉熵基本一样,只是加上了权重的功能,是计算具有权重的Sigmoid交叉熵函数。

                        计算公式如下:

  

                        使用时,直接调用对应的API即可。

小结

        在实际的模型训练过程中,损失函数的选取取决于输入标签数据的类型:如果输入的是实数、无界的值,损失函数使用平方差;如果输入标签是位矢量(分类标志),使用交叉熵会更合适。

相关文章:

TensorFlow入门(二十、损失函数)

损失函数 损失函数用真实值与预测值的距离指导模型的收敛方向,是网络学习质量的关键。不管是什么样的网络结构,如果使用的损失函数不正确,最终训练出的模型一定是不正确的。常见的两类损失函数为:①均值平方差②交叉熵 均值平方差 均值平方差(Mean Squared Error,MSE),也称&qu…...

MySQL中死锁

数据库的死锁是指不同的事务在获取资源时相互等待,导致无法继续执行的一种情况。当发生死锁时,数据库会自动中断其中一个事务,以解除死锁。在数据库中,事务可以分为读事务和写事务。读事务只需要获取读锁,而写事务需要…...

【LeetCode刷题(数据结构)】:给定一个链表 每个节点包含一个额外增加的随机指针 该指针可以指向链表中的任何节点或空节点 要求返回这个链表的深度拷贝

给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成,其中每个新节点的值都设为其对应的原节点的值。新节点的 next…...

uniapp封装loading 的动画动态加载

实现效果 html代码 <view class"loadBox" v-if"loading"><img :src"logo" class"logo"> </view> css代码 .loadBox {width: 180rpx;min-height: 180rpx;border-radius: 50%;display: flex;align-items: center;j…...

Kopler.gl笔记:可视化功能总览

1 添加数据 2 添加图层 打开“数据层”菜单&#xff0c;开始可视化。 层&#xff08;Layers&#xff09;简单来说就是可以相互叠加的数据可视化。 3 添加过滤器 在地图上添加过滤器以限制显示的数据。过滤器必须基于数据集中的列。要创建新的过滤器&#xff0c;打开“过滤器…...

rust学习Cell、RefCell、OnceCell

背景 Rust 内存安全基于以下规则:给定一个对象 T,它只能具有以下之一: 对对象有多个不可变引用 (&T)(也称为别名 aliasing)对对象有一个可变引用 (&mut T)(也称为可变性 mutability)这是由 Rust 编译器强制执行的。然而,在某些情况下,该规则不够灵活(this r…...

基于SSM的摄影约拍系统

基于SSM的摄影约拍系统的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringSpringMVCMyBatisJSP工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 【主要功能】 前台系统&#xff1a;首页拍摄作品展示、摄影师展示、模特展示、文章信息、交流论…...

分析智能平台VMware Greenplum 7 正式发布!

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…...

动态规划算法(3)--0-1背包、石子合并、数字三角形

目录 一、0-1背包 1、概述 2、暴力枚举法 3、动态规划 二、石子合并问题 1、概述 2、动态规划 3、环形石子怎么办&#xff1f; 三、数字三角形问题 1、概述 2、递归 3、线性规划 四、租用游艇问题 一、0-1背包 1、概述 0-1背包&#xff1a;给定多种物品和一个固定…...

Linux C/C++ 嗅探数据包并显示流量统计信息

嗅探数据包并显示流量统计信息是网络分析中的一种重要技术&#xff0c;常用于网络故障诊断、网络安全监控等方面。具体来说&#xff0c;嗅探器是一种可以捕获网络上传输的数据包&#xff0c;并将其展示给分析人员的软件工具。在嗅探器中&#xff0c;使用pcap库是一种常见的方法…...

Vitis导入自制IP导致无法构建Platform

怎么还有这种问题&#xff08; 解决Vitis导入自制IP导致无法构建Platform – TaterLi 个人博客 Vitis报错&#xff1a;fatal error: xxx.h: No such file or directory._ly2lj的博客-CSDN博客 在指定位置黏入以上代码即可&#xff1a; INCLUDEFILES$(wildcard *.h) LIBSOUR…...

SQLAlchemy 使用封装实例

类封装 database.py #! /usr/bin/env python # -*- coding: utf-8 -*-import sys import json import logging from datetime import datetimefrom core.utils import classlock, parse_bool from core.config import (MYSQL_HOST,MYSQL_PORT,MYSQL_USER,MYSQL_PASS,MYSQL_DA…...

Android Framework通信:Binder

文章目录 前言一、Linux传统跨进程通信原理二、Android Binder跨进程通信原理1、动态内核可加载模块2、内存映射3、Binder IPC 实现原理 三、Android Binder IPC 通信模型1、Client/Server/ServiceManager/驱动Binder与路由器之间的角色关系 2、Binder通信过程3、Binder通信中的…...

如何用精准测试来搞垮团队?

测试行业每年会冒出来一些新鲜词&#xff1a;混沌工程、精准测试、AI测试…… 这些新概念、新技术让我们感到很焦虑&#xff0c;逼着自己去学习和了解这些新玩意&#xff0c;担心哪一天被淘汰掉。 以至于给我这样的错觉&#xff0c;当「回归测试」、「精准测试」这两个词摆在一…...

暴力递归转动态规划(十)

题目 给定一个二维数组matrix[][]&#xff0c;一个人必须从左上角出发&#xff0c;最终到达右下角&#xff0c;沿途只可以向下或者向右走&#xff0c;沿途的数字都累加就是距离累加和。返回最小距离累加和。 这道题中会采用压缩数组的算法来进行优化 暴力递归 暴力递归方法的整…...

深度学习-房价预测案例

1. 实现几个函数方便下载数据 import hashlib import os import tarfile import zipfile import requests#save DATA_HUB dict() DATA_URL http://d2l-data.s3-accelerate.amazonaws.com/def download(name, cache_diros.path.join(.., data)): #save"""下载…...

【26】c++设计模式——>命令模式

c命令模式 C的命令模式是一种行为模式&#xff0c;通过将请求封装成对象&#xff0c;以实现请求发送者和接受者的解耦。 在命令模式中&#xff0c;命令被封装成一个包含特定操作的对象&#xff0c;这个对象包含的执行该操作的方法&#xff0c;以及一些必要的参数。命令对象可以…...

ElasticSearch容器化从0到1实践(一)

背景 通过kubernetes集群聚合多个Elasticsearch集群碎片资源&#xff0c;提高运维效率。 介绍 Kubernetes Operator 是一种特定的应用控制器&#xff0c;通过 CRD&#xff08;Custom Resource Definitions&#xff0c;自定义资源定义&#xff09;扩展 Kubernetes API 的功能…...

【Vue面试题二十四】、Vue项目中有封装过axios吗?主要是封装哪方面的?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;Vue项目中有封装过axios…...

旅游票务商城小程序的作用是什么

随着环境放开&#xff0c;旅游行业恢复了以往的规模&#xff0c;本地游、外地游成为众多用户选择&#xff0c;而在旅游时&#xff0c;不少人会报名旅行团前往各风景热点游玩&#xff0c;对旅游票务经营者而言&#xff0c;市场高需求的同时也面临一些难题。 对旅游票务经营商家…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...

精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑

精益数据分析&#xff08;98/126&#xff09;&#xff1a;电商转化率优化与网站性能的底层逻辑 在电子商务领域&#xff0c;转化率与网站性能是决定商业成败的核心指标。今天&#xff0c;我们将深入解析不同类型电商平台的转化率基准&#xff0c;探讨页面加载速度对用户行为的…...

职坐标物联网全栈开发全流程解析

物联网全栈开发涵盖从物理设备到上层应用的完整技术链路&#xff0c;其核心流程可归纳为四大模块&#xff1a;感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性&#xff0c;例如传感器选型需平衡精度与…...