当前位置: 首页 > news >正文

【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程

【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论

文章目录

  • 【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程
  • 前言
  • 准备工具
    • anaconda/cuda/cudnn
    • anaconda创建环境(选做)
    • 安装原生python(选做)
    • cmake
    • opencv4.8.0
    • opencv_contrib
  • CMake编译
  • VS2019编译
  • 可能出现的问题
    • cmake编译过程中可能出现的问题
    • VS2019编译过程中可能出现的问题
  • 测试使用GPU
  • 总结


前言

OpenCV是一个开源的计算机视觉库,包含了核心模块和扩展模块,提供了基础的图像处理和计算机视觉算法,以及一些机器学习工具。而OpenCV Contrib是OpenCV社区贡献的一组扩展模块之一,包含了一些较为新颖和实用的算法和工具函数,提供了一些高级的图像处理和计算机视觉算法。这些功能和算法可能不适合所有用户或者还处于实验性阶段。OpenCV Contrib模块中的代码由社区贡献者开发和维护,它们提供了一些在OpenCV核心库中尚未包含的新特性和实验性功能。


准备工具

cmake、vs2019、opencv4.8.0、opencv_contrib-4.8.0、anaconda、cuda、cudnn

anaconda/cuda/cudnn

安装cuda、cudnn可以参考此前博主的【深度学习windows10环境配置详细教程】,因为对于新手来说,需要注意的细节比较多,这里不浪费篇幅重复讲述了。

anaconda创建环境(选做)

为了将CUDA版本的opencv安装到虚拟环境中,安装到默认环境(base)不需要执行此步骤。

# 搭建opencv环境
conda create -n opencv_onnx_gpu python=3.10.9 -y
# 激活环境
activate opencv_onnx_gpu

虚拟环境中需要安装numpy,后续的编译过程中需要。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy

安装原生python(选做)

在使用 CMake 为 Anaconda 新建的虚拟环境安装 OpenCV 时,需要在主机上安装一个与虚拟环境中的 Python 版本一致的原生环境,这是由于CMake 需要在构建过程中使用与虚拟环境中的 Python 版本一致的 Python 解释器来生成适用于该版本的 Python 绑定。
博主在anaconda创建的虚拟环境python为3.10,因此需要安装了python3.10原生版本,否则即使通过编译但始终无法使用opencv-python。

原生python官网下载地址,选择Windows版本。

这里通过激活虚拟环境查看安装对应的版本,博主不确定这种微小版本的差异会不会影响后续编译测试,所以最好都保持一致。

勾选加入系统环境后直接安装。

配置环境变量,这里可能出现cmd使用的python版本还是使用anaconda的base环境的情况,这是因为在环境变量Path中anaconda的顺序排在原生Python的前面,调整原生python的路径在anaconda的base之前即可。

cmake

CMake官方下载地址,下载cmake-3.27.7-windows-x86_64.msi。

添加到环境和安装路径博主根据自身情况作出了修改,其他都是默认安装。

出现以下界面安装成功。

opencv4.8.0

Opencv官方下载地址,下载OpenCV – 4.8.0 Sources,下载解压opencv-4.8.0.zip。

opencv_contrib

opencv_contrib官方下载地址,选择opencv对应的contrib版本,例如opencv4.8.0对应就是opencv_contrib-4.8.0.zip。下载后直接解压。


CMake编译

  1. 打开CMake,where is the source code是Opencv sources(博主是opencv-4.8.0)的文件夹位置,where to build the binaries是编译opencv保存的文件夹位置(自定义),在左下角第一次点击Configure。
  2. 选择对应vs的版本(博主是vs2019),系统选择x64,最后点右下角Finish,显示Configuring done。
  3. 安装到默认环境(base)不需要执行此步骤,该步骤步骤的目的是安装cuda版本opencv到用户自定义的虚拟环境中,分别将路径指向自定义虚拟环境的对应位置 : PYTHON3_EXECUTABLE、PYTHON3_INCLUDE_DIR、PYTHON3_LIBRARY、PYTHON3_NUMPY_INCLUDE_DIRS(需要安装numpy)、PYTHON3_PACKAGES_PATH。
    4.在Search搜索框搜索带cuda的关键字,全部勾选。
  4. Search搜索框搜索OPENCV_EXTRA_MODULES_PATH,添加解压的opencv_contrib中的modules的路径,再搜索并勾选OPENCV_ENABLE_NONFREE选项。
  5. 将build_opencv_world选上,这可以将所有opencv的库都编译在一起,不需要自己手动选择添加每个小模块,但是具体的工程又不建议这种全家桶。
  6. 对于java、js、tests相关选项的选择,用Search搜索框分别搜索“java”,“js”,“tests”,根据需要选中和取消相关选项,默认都是选中,博主都取消了,必须勾选BUILD_opencv_python3,决定了能否在python中使用GPU加速,第二次点击Configure。
  7. 显示Configuring done后,将CUDA_ARCH_BIN显卡算力内容改成自己显卡的算力。官网查看显卡算力地址,删除小于自己显卡算力的部分,再搜索并勾选ENABLE_FAST_MATH选项,第三次点击Configure。
  8. 显示Configuring done后,点击generate,显示generating done,成功完成cmake编译,在输出的opencv保存文件夹位置中存在就生成了OpenCV.sln文件。

cmake编译过程是会从githup上下载数据,但是一般都会出现下载失败的情况,这里建议读者先跳到【可能出现的问题】这一小节,来确认是不是自己也出现了下载失败的情况。


VS2019编译

  1. 确保在解决方案的bindings这个目录下有opencv_python3,否则即使编译成功仍然不能使用CUDA加速。
  2. 使用VS2019 (以管理员方式运行) 打开刚刚编译工程OpenCV.sln,在release|x64模式下,在解决方案资源管理器—>CMakeTargets—>右键点击ALL_BUILD–>生成。
  3. 同样在release|x64模式下,在解决方案资源管理器—>CMakeTargets—>右键点击INSTALL–>生成。

没有任何报错信息就是编译完成,在XXX\lib\python3\Release文件夹下可以看到cv2.cpxxx-win_amd64.pyd文件。

XXX是编译opencv保存的文件夹位置(博主是opencv-4.8.0-vs2019-64),cpxx是python版本(博主是cp310)

同时,在虚拟环境中,可以在路径Lib\site-packages下看到cv2文件夹

进入cv2目录打开config.py可以看到虚拟环境opencv_onnx_gpu依赖于cmake编译的opencv(where to build the binaries)。

博主将依赖的opencv拷贝到了虚拟环境中,并修改了依赖的路基。


可能出现的问题

cmake编译过程中可能出现的问题

cmake编译出现Download failed的问题。

在where to build the binaries位置里面有个CMakeDownloadLog.txt,将里面下载链接复制到浏览器进行下载,

将其和where is the source code里面的.cache文件夹里面内容相对应,下图是下载失败时候,文件大小是0KB,手动下载完成后进行替换。

注意用来替换的文件的名称要与对应空文件的名称保持一致。


对于部分文件则需要将网页以另存为的方式进行替换,注意一定不要以复制网页内容粘贴到空文件的方式进行替换,这是无效的的。

将整个.cache都用同样的方式进行处理。

强调一点,出现这种问题,可以暂时先走完CMake编译过程,因为每一次Configuring都会有新的下载内容,然后再一次性将.cache的内容进行完整的替换,最后进行Configuring和Generate。

VS2019编译过程中可能出现的问题

通常是对于部分资源,vs2019没有管理员操作权限,因此只需要用管理员身份重新打开进行操作即可。


测试使用GPU

这里用一段简单的python代码验证安装完成的opencv是否支持gpu设备。

import cv2
# 检查是否支持CUDA
if cv2.cuda.getCudaEnabledDeviceCount():print("检测到支持CUDA的设备数量:", cv2.cuda.getCudaEnabledDeviceCount())
else:print("未检测到支持CUDA的设备")

验证成功,oepncv-cuda版本源码编译成功。


总结

尽可能简单、详细的介绍windows10下Python版本opencv4.8.0-cuda版本用源码进行编译的详细流程。

相关文章:

【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程

【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【opencv】windows10下opencv4.8.0-cuda Python版本源码编译教程前言准备工具anaconda/cuda/cudnnanaconda创建环境(选做)安装原…...

【1day】用友U8Cloud未授权访问漏洞学习

注:该文章来自作者日常学习笔记,请勿利用文章内的相关技术从事非法测试,如因此产生的一切不良后果与作者无关。 目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现...

基于单片机智能汽车仪表设计系统

基于单片机的汽车智能仪表的设计 摘要:汽车的汽车系统。速度测量以及调速是我们这次的设计所要研究的对象,本次设计的基础核心的模块就是单片机,其应用的核心的控制单元就是stc89c52单片机,用到的测速模块是霍尔传感器&#xff0c…...

java double 保留两位小数

在Java中,你可以使用 DecimalFormat 或 String.format 来保留 double 类型的数字两位小数。以下是两个例子: 使用 DecimalFormat import java.text.DecimalFormat;public class Main {public static void main(String[] args) {double number 123.456…...

计网第六章(应用层)(三)(文件传输协议FTP)

一、基本概念 将某台计算机中的文件通过网络传送到可能相距很远的另一台计算机中即文件传送。 FTP就是因特网上使用得最广泛的文件传送协议。采用客户/服务器方式。 FTP提供交互式的访问,允许客户指明文件的类型和格式(如指明是否使用ASCII码&#xf…...

微信小程序canvas画布绘制base64图片并保存图片到相册中

WXML部分&#xff1a; <view class"img_" style"width: 100%;"><canvas type"2d" id"canvasId" style"width: 100%;height: 100%" ></canvas> <button style"margin: auto;width: 70%;marg…...

Hadoop3教程(八):MapReduce中的序列化概述

文章目录 &#xff08;79&#xff09;MR序列化概述&#xff08;80&#xff09;自定义序列化步骤&#xff08;81&#xff09;序列化案例需求分析&#xff08;82&#xff09;序列化案例代码参考文献 &#xff08;79&#xff09;MR序列化概述 什么是序列化&#xff0c;什么是反序…...

Flash-Attention

这是一篇硬核的优化Transformer的工作。众所周知&#xff0c;Transformer模型的计算量和储存复杂度是 O ( N 2 ) O(N^2) O(N2) 。尽管先前有了大量的优化工作&#xff0c;比如LongFormer、Sparse Transformer、Reformer等等&#xff0c;一定程度上减轻了Transformer的资源消耗…...

发布npm包质量分测试

查询质量分接口 https://registry.npmjs.org/-/v1/search?textcanvas-plus v0.0.1 quality 0.2987 新建文件夹 canvas-plus 执行命令 npm init 生成package.json {"name": "3r/canvas-plus","version": "0.0.1","descript…...

基于适应度相关优化的BP神经网络(分类应用) - 附代码

基于适应度相关优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于适应度相关优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.适应度相关优化BP神经网络3.1 BP神经网络参数设置3.2 适应度相关算法应用 4…...

复杂网络 | 利用复杂网络预测城市空间流量

文章目录 效果一览文章概述导入必要的包读取时间序列数据,并使用日期做索引将时间序列进行可视化展示取一年的数据进行分析将数据分布进行可视化展示画移动平均图n 代表滑动窗口的大小向前差分法去趋势化线性回归方法去趋势化拟合模型的线性趋势将拟合得到趋势进行可视化detren…...

【1】c++11新特性(稳定性和兼容性)—>原始字面量

在C11中添加了定义原始字符串的字面量&#xff0c;定义方式为&#xff1a;R “xxx(原始字符串)xxx”其中&#xff08;&#xff09;两边的字符串可以省略。原始字面量R可以直接表示字符串的实际含义&#xff0c;而不需要额外对字符串做转义或连接等操作。 编程过程中&#xff0c…...

学习pytorch13 神经网络-搭建小实战Sequential的使用

神经网络-搭建小实战&Sequential的使用 官网模型结构根据模型结构和数据的输入shape&#xff0c;计算用在模型中的超参数coderunning log网络结构可视化 B站小土堆pytorch视频学习 官网 https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Se…...

TCP发送接口(如send(),write()等)的返回值与成功发送到接收端的数据量无直接关系

1. TCP发送接口&#xff1a;send() TCP发送数据的接口有send&#xff0c;write&#xff0c;sendmsg。在系统内核中这些函数有一个统一的入口&#xff0c;即sock_sendmsg()。由于TCP是可靠传输&#xff0c;所以对TCP的发送接口很容易产生误解&#xff0c;比如sn send(...); 错误…...

【Python、Qt】使用QItemDelegate实现单元格的富文本显示+复选框功能

主打一个 折磨 坑多 陪伴。代码为Python&#xff0c;C的就自己逐条语句慢慢改吧。 Python代码&#xff1a; import sys from types import MethodType from PyQt5.QtCore import Qt,QPoint,QSize,QRect,QEvent from PyQt5.QtGui import QStandardItemModel, QStandardItem,QTe…...

【JVM】JVM类加载机制

JVM类加载机制 加载双亲委派模型 验证准备解析初始化 JVM的类加载机制,就是把类,从硬盘加载到内存中 Java程序,最开始是一个Java文件,编译成.class文件,运行Java程序,JVM就会读取.class文件,把文件的内容,放到内存中,并且构造成.class类对象 加载 这里的加载是整个类加载的一…...

【面试经典150 | 区间】汇总区间

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;一次遍历复杂度分析 其他语言python3C 写在最后 Tag 【一次遍历】【数组】【字符串】 题目来源 228. 汇总区间 题目解读 给定一个无重复的升序数组 nums&#xff0c;需要将这个数组按照以下规则进行汇总&#xff1…...

主流接口测试框架对比

公司计划系统的开展接口自动化测试&#xff0c;需要我这边调研一下主流的接口测试框架给后端测试&#xff08;主要测试接口&#xff09;的同事介绍一下每个框架的特定和使用方式。后端同事根据他们接口的特点提出一下需求&#xff0c;看哪个框架更适合我们。 需求 1、接口编写…...

LeetCode 150.逆波兰表达式求值

题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目解析 首先我们需要知道什么是逆波兰表达式&#xff0c;像我们平常遇到的都是中缀表达式&#xff0c;然而逆波兰确实后缀表达式&#xff0c;因此这个题目隐含的意思就是将一个后缀表达式转…...

华为---企业WLAN组网基本配置示例---AC+AP组网

ACAP组网所需的物理条件 1、无线AP---收发无线信号&#xff1b; 2、无线控制器(AC)---用来控制管理多个AP&#xff1b; 3、PoE交换机---能给AP实现网络连接和供电的交换机&#xff1b; 4、授权&#xff1a;默认AC管理的AP数量有限&#xff0c;买授权才能管控更多AP。 WLAN创建…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...