异步使用langchain
文章目录
- 一.先利用langchain官方文档的AI功能问问
- 二.langchain async api
- 三.串行,异步速度比较
一.先利用langchain官方文档的AI功能问问
- 然后看他给的 Verified Sources
- 这个页面里面虽然有些函数是异步函数,但是并非专门讲解异步的
二.langchain async api
还不如直接谷歌搜😂 一下搜到, 上面那个AI文档问答没给出这个链接
-
官方示例
import asyncio import timefrom langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChaindef generate_serially():llm = OpenAI(temperature=0.9)prompt = PromptTemplate(input_variables=["product"],template="What is a good name for a company that makes {product}?",)chain = LLMChain(llm=llm, prompt=prompt)for _ in range(5):resp = chain.run(product="toothpaste")print(resp)async def async_generate(chain):resp = await chain.arun(product="toothpaste")print(resp)async def generate_concurrently():llm = OpenAI(temperature=0.9)prompt = PromptTemplate(input_variables=["product"],template="What is a good name for a company that makes {product}?",)chain = LLMChain(llm=llm, prompt=prompt)tasks = [async_generate(chain) for _ in range(5)]await asyncio.gather(*tasks)s = time.perf_counter() # If running this outside of Jupyter, use asyncio.run(generate_concurrently()) await generate_concurrently() elapsed = time.perf_counter() - s print("\033[1m" + f"Concurrent executed in {elapsed:0.2f} seconds." + "\033[0m")s = time.perf_counter() generate_serially() elapsed = time.perf_counter() - s print("\033[1m" + f"Serial executed in {elapsed:0.2f} seconds." + "\033[0m")
-
不过官方代码报错了
-
我让copilot修改一下,能跑了
import time import asyncio from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChaindef generate_serially():llm = OpenAI(temperature=0.9)prompt = PromptTemplate(input_variables=["product"],template="What is a good name for a company that makes {product}?",)chain = LLMChain(llm=llm, prompt=prompt)for _ in range(5):resp = chain.run(product="toothpaste")print(resp)async def async_generate(chain):resp = await chain.arun(product="toothpaste")print(resp)async def generate_concurrently():llm = OpenAI(temperature=0.9)prompt = PromptTemplate(input_variables=["product"],template="What is a good name for a company that makes {product}?",)chain = LLMChain(llm=llm, prompt=prompt)tasks = [async_generate(chain) for _ in range(5)]await asyncio.gather(*tasks)async def main():s = time.perf_counter()await generate_concurrently()elapsed = time.perf_counter() - sprint("\033[1m" + f"Concurrent executed in {elapsed:0.2f} seconds." + "\033[0m")s = time.perf_counter()generate_serially()elapsed = time.perf_counter() - sprint("\033[1m" + f"Serial executed in {elapsed:0.2f} seconds." + "\033[0m")asyncio.run(main())
-
这还有一篇官方blog
三.串行,异步速度比较
- 先学习一下掘金上看到的一篇:https://juejin.cn/post/7231907374688436284
- 为了更方便的看到异步效果,我在原博主的基础上,print里面加了一个提示
# 引入time和asyncio模块
import time
import asyncio
# 引入OpenAI类
from langchain.llms import OpenAI# 定义异步函数async_generate,该函数接收一个llm参数和一个name参数
async def async_generate(llm, name):# 调用OpenAI类的agenerate方法,传入字符串列表["Hello, how are you?"]并等待响应resp = await llm.agenerate(["Hello, how are you?"])# 打印响应结果的生成文本和函数名print(f"{name}: {resp.generations[0][0].text}")# 定义异步函数generate_concurrently
async def generate_concurrently():# 创建OpenAI实例,并设置temperature参数为0.9llm = OpenAI(temperature=0.9)# 创建包含10个async_generate任务的列表tasks = [async_generate(llm, f"Function {i}") for i in range(10)]# 并发执行任务await asyncio.gather(*tasks)# 主函数
# 如果在Jupyter Notebook环境运行该代码,则无需手动调用await generate_concurrently(),直接在下方执行单元格即可执行该函数
# 如果在命令行或其他环境下运行该代码,则需要手动调用asyncio.run(generate_concurrently())来执行该函数
asyncio.run(generate_concurrently())
免费用户一分钟只能3次,实在是有点难蚌
-
整合一下博主的代码,对两个速度进行比较,但是这个调用限制真的很搞人啊啊啊
import time import asyncio from langchain.llms import OpenAIasync def async_generate(llm, name):resp = await llm.agenerate(["Hello, how are you?"])# print(f"{name}: {resp.generations[0][0].text}")async def generate_concurrently():llm = OpenAI(temperature=0.9)tasks = [async_generate(llm, f"Function {i}") for i in range(3)]await asyncio.gather(*tasks)def generate_serially():llm = OpenAI(temperature=0.9)for _ in range(3):resp = llm.generate(["Hello, how are you?"])# print(resp.generations[0][0].text)async def main():s = time.perf_counter()await generate_concurrently()elapsed = time.perf_counter() - sprint("\033[1m" + f"Concurrent executed in {elapsed:0.2f} seconds." + "\033[0m")s = time.perf_counter()generate_serially()elapsed = time.perf_counter() - sprint("\033[1m" + f"Serial executed in {elapsed:0.2f} seconds." + "\033[0m")asyncio.run(main())
- 再看一篇blog
- 作者将代码开源在这里了:https://github.com/gabrielcassimiro17/async-langchain
- 测试一下它的async_chain.py文件
- 读取csv的时候路径一直报错,还好不久前总结了一篇blog:Python中如何获取各种目录路径
-
直接获取当前脚本路径了
import os import pandas as pd# Get the directory where the script is located script_directory = os.path.dirname(os.path.abspath(__file__))# Construct the path to the CSV file csv_path = os.path.join(script_directory, 'wine_subset.csv')# Read the CSV file df = pd.read_csv(csv_path)
- sequential_run.py 就不跑了… 一天200次调用都快没了
-
- 主要是看看两者区别
相关文章:

异步使用langchain
文章目录 一.先利用langchain官方文档的AI功能问问二.langchain async api三.串行,异步速度比较 一.先利用langchain官方文档的AI功能问问 然后看他给的 Verified Sources 这个页面里面虽然有些函数是异步函数,但是并非专门讲解异步的 二.langchain asy…...

抖音开放平台第三方代小程序开发,授权事件、消息与事件通知总结
大家好,我是小悟 关于抖音开放平台第三方代小程序开发的两个事件接收推送通知,是开放平台代小程序实现业务的重要功能。 授权事件推送和消息与事件推送类型都以Event的值判断。 授权事件推送通知 授权事件推送包括:推送票据、授权成功、授…...

华为9.20笔试 复现
第一题 丢失报文的位置 思路:从数组最小索引开始遍历 #include <iostream> #include <vector> using namespace std; // 求最小索引值 int getMinIdx(vector<int> &arr) {int minidx 0;for (int i 0; i < arr.size(); i){if (arr[i] …...

二十五、【色调调整基础】
文章目录 1、亮度/对比度a、亮度b、对比度 2、曝光度3、阈值4、色阶5、反相6、黑白7、渐变映射 1、亮度/对比度 a、亮度 亮度是指画面的明亮程度 b、对比度 对比度指的是一幅图像中,明暗区域最亮和最暗之间不同亮度层级的测量,如下图所示࿰…...

Android Studio SDK manager加载packages不全
打开Android Studio里的SDK manager,发现除了已安装的,其他的都不显示。 解决方法: 设置代理: 方便复制> http://mirrors.neusoft.edu.cn/ 重启Android Studio...
[esp32-wroom]基础开发
1、点亮LED灯 int led_pin2; void setup() {// put your setup code here, to run once:pinMode(led_pin,OUTPUT);}void loop() {// put your main code here, to run repeatedly:digitalWrite(led_pin,HIGH);delay(1000);digitalWrite(led_pin,LOW);delay(1000); } 2、LED流…...
利用Docker 实现 MiniOB环境搭建
官方文档有,但是感觉写的跟shift一样(或者是我的阅读理解跟shift一样 下面是自己的理解 一.下载docker 这个去官网下载安装,没什么说的 Docker: Accelerated Container Application Development 二.用docker下载MiniOB环境 1.打开powershell ( win r ,然后输入powershell…...
【DB2】—— 数据库表查询一直查不出来数据
问题描述 近日,数据库的测试环境中有一个打印日志表,一共有将近50w的数据,Java程序在查询的时候一直超时。 在DBvisualizer中查询数据无论是使用select * 还是 select count(*)查询的时候都是一直在执行,就是查询不到结果。 排查…...

【教程】使用vuepress构建静态文档网站,并部署到github上
官网 快速上手 | VuePress (vuejs.org) 构建项目 我们跟着官网的教程先构建一个demo 这里我把 vuepress-starter 这个项目名称换成了 howtolive 创建并进入一个新目录 mkdir howtolive && cd howtolive使用你喜欢的包管理器进行初始化 yarn init 这里的问题可以一…...

python 机器视觉 车牌识别 - opencv 深度学习 机器学习 计算机竞赛
1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:3分 🧿 更多资…...

Hadoop3教程(十二):MapReduce中Shuffle机制的概述
文章目录 (95) Shuffle机制什么是shuffle?Map阶段Reduce阶段 参考文献 (95) Shuffle机制 面试的重点 什么是shuffle? Map方法之后,Reduce方法之前的这段数据处理过程,就叫做shuff…...

MySQL为什么用b+树
索引是一种数据结构,用于帮助我们在大量数据中快速定位到我们想要查找的数据。 索引最形象的比喻就是图书的目录了。注意这里的大量,数据量大了索引才显得有意义,如果我想要在[1,2,3,4]中找到4这个数据,直接对全数据检索也很快&am…...
浅谈机器学习中的概率模型
浅谈机器学习中的概率模型 其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X [ x 1 , x 2 , . . . .…...

MySQL 函数 索引 事务 管理
目录 一. 字符串相关的函数 二.数学相关函数 编辑 三.时间日期相关函数 date.sql 四.流程控制函数 centrol.sql 分页查询 使用分组函数和分组字句 group by 数据分组的总结 多表查询 自连接 子查询 subquery.sql 五.表的复制 六.合并查询 七.表的外连接 …...
Flink如何基于事件时间消费分区数比算子并行度大的kafka主题
背景 使用flink消费kafka的主题的情况我们经常遇到,通常我们都是不需要感知数据源算子的并行度和kafka主题的并行度之间的关系的,但是其实在kafka的主题分区数大于数据源算子的并行度时,是有一些注意事项的,本文就来讲解下这些注…...

总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例
总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例 一方法调用顺序是按照英文字母顺序从A-Z二该示例可以用作servlet中request的API参考,从而知道该如何获取哪些路径参数等等三Servlet的API版本5.0.0、JSP的API版本:…...

ChatGPT AIGC 完成Excel跨多表查找操作vlookup+indirect
VLOOKUP和INDIRECT的组合在Excel中用于跨表查询,其中VLOOKUP函数用于在另一张表中查找数据,INDIRECT函数则用于根据文本字符串引用不同的工作表。具体操作如下: 1.假设在工作表1中,A列有你要查找的值,B列是你希望查询的工作表名称。 2.在工作表1的C列输入以下公式:=VLO…...
Linux系统conda虚拟环境离线迁移移植
本人创建的conda虚拟环境名为yys(每个人的虚拟环境名不一样,替换下就行) 以下为迁移步骤: 1.安装打包工具将虚拟环境打包: conda install conda-pack conda pack -n yys -o yys.tar.gz 2.将yys.tar.gz上传到服务器&…...
Vue16 绑定css样式 style样式
绑定样式: 1. class样式写法:class"xxx" xxx可以是字符串、对象、数组。字符串写法适用于:类名不确定,要动态获取。对象写法适用于:要绑定多个样式,个数不确定,名字也不确定。数组写法适用于&…...

[Spring] SpringMVC 简介(三)
目录 九、SpringMVC 中的 AJAX 请求 1、简单示例 2、RequestBody(重点关注“赋值形式”) 3、ResponseBody(经常用) 4、为什么不用手动接收 JSON 字符串、转换 JSON 字符串 5、RestController 十、文件上传与下载 1、Respo…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
FTXUI::Dom 模块
DOM 模块定义了分层的 FTXUI::Element 树,可用于构建复杂的终端界面,支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...
GeoServer发布PostgreSQL图层后WFS查询无主键字段
在使用 GeoServer(版本 2.22.2) 发布 PostgreSQL(PostGIS)中的表为地图服务时,常常会遇到一个小问题: WFS 查询中,主键字段(如 id)莫名其妙地消失了! 即使你在…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...