当前位置: 首页 > news >正文

【通义千问】大模型Qwen GitHub开源工程学习笔记(4)-- 模型的量化与离线部署

摘要:

量化方案基于AutoGPTQ,提供了Int4量化模型,其中包括Qwen-7B-Chat和Qwen-14B-Chat。更新承诺在模型评估效果几乎没有损失的情况下,降低存储要求并提高推理速度。量化是指将模型权重和激活的精度降低以节省存储空间并提高推理速度的过程。AutoGPTQ是一种专有量化工具。Int4是指4位整数量化,与传统的8位量化相比,可以进一步减少存储要求。

如何使用Int4量化模型

在开始使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包:

pip install auto-gptq optimum

 【Auto-GPT 】

AutoGPTQ将能够作为一个可扩展、灵活的量化后端,支持所有类似GPTQ的方法,并自动量化由Pytorch编写的LLM。说白了就是让模型能够轻量化。

┏ (゜ω゜)=👉传送门==>GitHub - PanQiWei/AutoGPTQ: An easy-to-use LLMs quantization package with user-friendly apis, based on GPTQ algorithm.

 https://huggingface.co/blog/zh/gptq-integration

问题:ModuleNotFoundError: No module named 'optimum.gptq'的处理方法

在python环境下使用如下代码,查看是否安装这个模块

import pkg_resourcestry:pkg_resources.get_distribution('optimum')print('optimum is installed.')# Check if gptq is installed under optimumtry:pkg_resources.get_distribution('optimum.gptq')print('gptq is installed under optimum.')except pkg_resources.DistributionNotFound:print('gptq is not installed under optimum.')
except pkg_resources.DistributionNotFound:print('optimum is not installed.')

我这里返回了

optimum is installed.
gptq is not installed under optimum.

看来,我是安装了【optimum】这个模块,但是下面的【gptq】没有安装

通过pip list指令,我也找到所装的optimum版本

 Optimum 是 Transformers 的扩展,它提供了一组性能优化工具,可以在目标硬件上以最高效率训练和运行模型。

【解决方法】 

删除,从Git上clone下(clone地址==>https://github.com/huggingface/optimum),再安装optimum。这次通过在clone的本地路径下,通过指令【python setup.py install】去安装。发现optimum文件夹下有了gptq这个模块

 离线运行一下量化后的模型

首先还是将模型文件下载到本地,用YOURPATH去保存你的模型文件所在的相对路径。

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfigYOURPATH = 'models/Qwen-7B-Chat-Int'
# name = 'Qwen/Qwen-7B-Chat-Int'
tokenizer = AutoTokenizer.from_pretrained(YOURPATH, local_files_only=True,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(YOURPATH, local_files_only=True, device_map="auto", trust_remote_code=True).eval()

相关文章:

【通义千问】大模型Qwen GitHub开源工程学习笔记(4)-- 模型的量化与离线部署

摘要: 量化方案基于AutoGPTQ,提供了Int4量化模型,其中包括Qwen-7B-Chat和Qwen-14B-Chat。更新承诺在模型评估效果几乎没有损失的情况下,降低存储要求并提高推理速度。量化是指将模型权重和激活的精度降低以节省存储空间并提高推理速度的过程。AutoGPTQ是一种专有量化工具。…...

2022最新版-李宏毅机器学习深度学习课程-P23 为什么用了验证集结果还是过拟合

用了验证集还有可能会过拟合 这个片段可以从理论上证明这一点 以上整个挑选模型的过程也可以想象为一种训练。 把三个模型导出的最小损失公式看成一个集合,现在要做的就是在这个集合中找到某个h(此处可以视为训练),使得在验证集…...

Spring Cloud Alibaba—Sentinel 控制台安装

1、Sentinel 控制台包含如下功能: 查看机器列表以及健康情况:收集 Sentinel 客户端发送的心跳包,用于判断机器是否在线。 监控 (单机和集群聚合):通过 Sentinel 客户端暴露的监控 API,定期拉取并且聚合应用监控信息,最…...

基于动物迁徙优化的BP神经网络(分类应用) - 附代码

基于动物迁徙优化的BP神经网络(分类应用) - 附代码 文章目录 基于动物迁徙优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.动物迁徙优化BP神经网络3.1 BP神经网络参数设置3.2 动物迁徙算法应用 4.测试结果…...

一键搞定!黑群晖虚拟机+内网穿透实现校园公网访问攻略!

文章目录 前言本教程解决的问题是:按照本教程方法操作后,达到的效果是前排提醒: 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机:1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…...

【C语言】——通讯录(静态-动态增长-文件储存)

目录 前言: 一:整体框架 关于通讯录结构体的创建 二:通讯录的功能实现(静态) 2.1初始化通讯录 2.2增加联系人 2.3打印通讯录 2.4删除联系人 2.5 查找联系人 2.6修改联系人 2.7排序联系人 三:通…...

win10安装nginx及简单使用(命令)

下载 下载地址:http://nginx.org/en/download.html 使用 解压 更改配置 conf目录下nginx.conf 修改为未被占用的端口,地址改成你的地址 server {# 监听端口 listen 9010;# 地址 server_name 127.0.0.1;# 静态资源location / {root html;i…...

【农业生产系统模型】基于R语言APSIM模型进阶应用与参数优化、批量模拟实践技术

随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生…...

金融数学方法:梯度下降法

1.算法介绍 梯度下降法是一种常用的优化算法,其通过沿着梯度下降的方向迭代寻找局部极小值。如果沿着梯度上升的方向迭代,就可以找到极大值。 在梯度下降法中,我们首先需要选择一个初始点 x 0 x_0 x0​作为起始位置,然后计算当前位…...

1031 查验身份证

一.问题: 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4&#xf…...

如何共享 Android 不同模块的构建配置

最近想重新梳理学习一遍 Android 的各个知识点,于是新建了一个 AndroidStudy 项目仓库,打算每个知识块新建 1 个 module。 类似这样: AndroidStudy (Root Project) ├─app (Module0) ├─CustomView (Module1) ├─KotlinCoroutines (Modul…...

atlas运维中遇到的问题

1、java.lang.NoClassDefFoundError:javax/ws/rs/core/Link$Builder 主要原因:jsr311-api包中javax.ws.rs.core包中没有Link类,而Atlas以HBase作为元数据存储,HBase本身使用的为javax.ws.rs-api包中的core包,其中有Lin…...

06-React的路由

06-React的路由 1.相关理解 1).SPA的理解 单页Web应用(single page web application,SPA)。整个应用只有一个完整的页面。点击页面中的链接不会刷新页面,只会做页面的局部更新。数据都需要通过ajax请求获取, 并在前端异步展现。…...

虹科方案 | 加州理工学院利用HK-TrueNAS开展地震研究

一、客户背景 加州理工学院(CalTech)是世界顶尖的理工类科学研究型学府之一。加州理工学院地震实验室是加州理工学院地质与行星科学部(GPS)的一个分支机构,成立于1921年,自20年代以来一直是世界地震学研究中心,并且几十年来一直是媒体对大地…...

宝塔面板部署express以及MySql项目

第一次在宝塔面板上部署express和MySql项目,部署过程一直跑不通接口,特此记录一下。 在部署的时候,建议第一步把数据库MySql给跑通,中间好多原因是由于数据库的原因给引起的。 一.连接数据库 (1)在宝塔面…...

联盟链学习笔记-网络的创建

联盟链学习笔记 初始网络 下图是初始网络网络N的参考图 排序服务 在定义 网络 N 的时候,第一件事情就是定义一个 排序服务O4。O4 最初被配置并且由组织 R4 的一个管理员来启动,并且由 R4 管理。配置 NC4 包含了描述网络管理能力初始集合的规则。最初在…...

System.Drawing.Common.Bitmap跨平台的替代方案

使用SkiaSharp SkiaSharp是Skia Graphics Library的.Net跨平台实现,它可以在Windows,macOS,Linux,iOS,Android和其他平台上使用。 例如需要Linux版,则安装第一个和第四个: 以下是使用SkiaShar…...

深入理解 Java 泛型

没有泛型是怎样的 了解点 Java 历史的都知道,泛型是从 JDK 1.5 版本添加的特性,在 JDK1.5 之前,Java 很多特性都是没有的例如:泛型、注解、自动装箱和拆箱、可变参数。在介绍泛型之前,我们先来看看,如果没有泛型的世界是怎么样的。 假设有一个 List,我只想把 String 类…...

【基础篇】七、Flink核心概念

文章目录 1、并行度2、并行度的设置3、算子链4、禁用算子链5、任务槽6、任务槽和并行度的关系 1、并行度 要处理的数据量很多时,可以把一个算子的操作(比如前面demo里的flatMap、sum),"复制"多份到多个节点&#xff0c…...

06-Scala面向对象

面向对象编程 ​ Scala是一门完全面向对象的语言,摒弃了Java中很多不是面向对象的语法。 ​ 虽然如此,但其面向对象思想和 Java的面向对象思想还是一致的 Scala包 1)基本语法 Scala中基本的package包语法和 Java 完全一致 例如&#xf…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...