当前位置: 首页 > news >正文

图形编辑器:拖拽阻塞优化

大家好,我是前端西瓜哥。在图形编辑器中,想象这么一个场景,我们撤销了一些重要的操作,然后想选中一个图形,看看它的属性。你点了上去,然后你发现你再也无法重做了。

你以为你点了一下,但其实你点击的时候,鼠标还是小小移动了一点,飘了一个像素点。对编辑器来说,它识别到让图形移动一个像素点的操作,就生成了一个新的版本,然后重做栈(redoStack)被清空了,你退回前的操作就没了。

为了解决这类用户微小操作的问题,我们可以巧妙地给拖拽行为加一个 阻塞阈值。具体就是就是按下鼠标后,移动鼠标的距离要大于某个值,我们才认为发生了拖拽,并执行对应工具的逻辑。

下面为我们要实现的效果。此处为了更好地演示效果,将阈值设置得很大。通常设置个 4px 就够了。

可以看到,按下鼠标然后移动,如果移动的位移太小,矩形是不会被移动的,直到达到一定位移阈值后,矩形才会乖乖听话跟随鼠标进行移动

阈值表示位移距离,使用的是视口坐标系,而不是场景坐标系。

代码改造

原来的逻辑:

let isPressing = false;
let currentTool = null; // 当前工具对象// 鼠标按下
function handleDown(e) {isPressing = true;currentTool.start(e);
}// 鼠标移动
function handleMove(e) {if (isPressing) {currentTool.drag(e);} else {// 非拖拽的移动事件// 比如选择工具停留在图形上,图形要高亮,此时没发生拖拽currentTool.move(e);}
}// 鼠标释放
function handleUp(e) {currentTool.end(e);isPressing = false;
}

鼠标按下时,isPressing 设置为 true,表示发生了鼠标按下事件。

此时鼠标再移动,我们就能知道这是一个 “拖拽” 的行为,即按下鼠标不放然后移动鼠标的行为。此时调用工具对象的 drag 方法。

最后鼠标释放,将状态 isPressing 重置。

现在我们进行改造。

let isPressing = false;
let currentTool = null; // 当前工具对象let isEnableDragging = false; // 是否调用工具对象的 drag 方法
let startPos = null; // 保存鼠标按下时的坐标
const blockStep = 4; // 阈值function handleDown(e) {isPressing = true;isEnableDragging = false;startPos = { x: e.clientX, y: e.clientY };currentTool.start(e);
}function handleMove(e) {// 判断位移是否突破阈值,是的话更新状态为 “可拖拽”if (!isEnableDragging &&(Math.abs(e.clientX - startPos.x) > blockStep ||Math.abs(e.clientX - startPos.x) > blockStep)) {isEnableDragging = true;}if (isPressing) {if (isEnableDragging) {// “可拖拽” 状态,调用工具的 drag 方法currentTool.drag(e);}} else {currentTool.move(e);}
}function handleUp(e) {currentTool.end(e);// 初始化状态isPressing = false;isEnableDragging = false;startPos = null;
}

核心思路是引入 isEnableDragging 状态,表示鼠标移动时,是否达到移动的条件。

我们在鼠标移动事件中,计算鼠标按下和鼠标移动之间的距离是否超过某个值,如果超过阈值,就将 isEnableDragging 状态转换为 true。

然后判断 isEnableDragging 为 true,就调用工具对象的 drag 方法。

需要注意的是,不要只用位移距离来判断是否可以拖拽,要配合状态。否则突破阈值后,又移动回来,你会发现你又卡住了,因为此时阈值因为再次计算,没能达到阈值。

所以加了个 isEnableDragging 状态,在第一次突破阈值设置为 true 后,就再也不用计算位移了,之后一直都是可拖拽状态,直到鼠标释放重置状态。

结尾

拖拽阻塞是开发图形编辑器的一点小细节,并不复杂,但能带来很好的用户体验。

我是前端西瓜哥,欢迎关注我,学习更多前端知识。

相关文章:

图形编辑器:拖拽阻塞优化

大家好,我是前端西瓜哥。在图形编辑器中,想象这么一个场景,我们撤销了一些重要的操作,然后想选中一个图形,看看它的属性。你点了上去,然后你发现你再也无法重做了。 你以为你点了一下,但其实你…...

c++ 的 Eigen库写 AX=XB的矩阵求解代码

1.AXXB的矩阵求解代码(3*3) #include <iostream> #include <Eigen/Dense>int main() {// 定义矩阵A和BEigen::MatrixXd A(3, 3);A << 1, 2, 3,4, 5, 6,7, 8, 9;Eigen::MatrixXd B(3, 3);B << 10, 11, 12,13, 14, 15,16, 17, 18;// 求解AXXBEigen::Mat…...

正点原子linux驱动篇

linux驱动开发与裸机开发的区别 裸机直接操作寄存器&#xff0c;有些mcu提供了库&#xff0c;但还是很底层 1、linux驱动开发直接操作寄存器很麻烦不现实&#xff0c;主要是根据linux驱动框架进行开发&#xff08;就是有很多操作都是一样的&#xff0c;我们只需要对一个程序模…...

MATLAB绘制雷达图/蜘蛛图

雷达图/蜘蛛图 1 方法一 函数来源为MATLAB | 如何使用MATLAB绘制雷达图(蜘蛛图) 1.1 调用函数 1.2 案例 2 方法二 函数来源为MATLAB帮助-spider_plot 2.1 调用函数 语法&#xff08;Syntax&#xff09;&#xff1a; spider_plot(P)spider_plot(P, Name, Value, ...)h …...

算法入门,十字路口选择的案例,如果是南方,则向前行

从if判断start; 十字路口的案例 class HelloWorld { static void Main(string[] args) { /* Write C# code in this online editor and run it. */ Console.WriteLine("Hello World!"); string f…...

父传子与子传父步骤

父传子&#xff1a; 问题&#xff1a;父页面中引入子组件 把想要传给子页面的值用在子组件中用 &#xff1a;值“值” (用同一个值好区分)来绑定。 在子页面中用props接收 子组件不能改变父组件传过来的值。&#xff08;传多个页面的时候是&#xff0c;比如父传孙的时候我会…...

Java concurrency - Task Execution

1.在单个线程里处理所有的请求&#xff1a;接受请求-处理请求 优点&#xff1a;逻辑简单 缺点&#xff1a;吞吐量低&#xff0c;资源利用率低&#xff0c;响应时间长 2.每个任务分配一个单独的线程来处理&#xff1a; 接受请求-创建线程-在线程里处理请求 优点&#xff1a; …...

浅谈BOM

什么是BOM BOM对于每个前端都不陌生&#xff0c;但是很多人都停留在表面&#xff0c;而没有深层次的研究过它。JavaScript有一个非常重要的运行环境就是浏览器&#xff0c;而且浏览器本身又作为一个应用程序需要对其本身进行操作&#xff0c;所以通常浏览器会有对应的对象模型…...

每日学术速递2.24

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.LG 1.BUAA_BIGSCity: Spatial-Temporal Graph Neural Network for Wind Power Forecasting in Baidu KDD CUP 2022 标题&#xff1a;BUAA_BIGSCity&#xff1a;百度KDD CUP 2022风电预测…...

SpringBoot 面试问答总结(VIP典藏版)

1. 什么是 Spring Boot&#xff1f; Spring Boot 是 Spring 开源组织下的子项目&#xff0c;是 Spring 组件一站式解决方案&#xff0c;主要是简化了使用Spring 的难度&#xff0c; 简省了繁重的配置&#xff0c;提供了各种启动器&#xff0c;使开发者能快速上手。 2. 为什…...

CSS 定位网页元素【快速掌握知识点】

目录 前言 一、position: static 二、position: relative 三、position: absolute 四、position: fixed 五、position: sticky 前言 当我们在设计网页时&#xff0c;经常需要对网页中的元素进行定位&#xff0c;以便它们出现在我们想要的位置。在 CSS 中&#xff0c;我们…...

构建Docker基础镜像(ubuntu20.04+python3.7.1+chrome101+chromedriver101)

文章目录 一、前置条件1.下载 chrome【google-chrome-stable_current_amd64.deb】2.下载 chromedriver【chromedriver_linux64.zip】3.创建 ubuntu 镜像源文件【sources.list】二、构建方法1.构建目录1.创建DockerFile2.打包镜像一、前置条件 要先下载一个支持 linux 的 浏览器…...

最新最全Java面试知识

工作也有好些年了&#xff0c;从刚毕业到前几年看过无数的面试题&#xff0c;在这个过程中也作为面试官面试过其他人&#xff0c;总想着自己写一个面试总结&#xff0c;随着自我认识的变化&#xff0c;一些知识点的理解也越来越不一样了。写下来温故而知新。很多问题可能别人也…...

个人电脑需求严重疲软,联想集团财务前景仍不乐观

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 财务业绩 联想集团&#xff08;00992&#xff09;于2月16日盘后公布了2023财年第三季度财报。 财报显示联想集团2023年第三季度的收入为152.67亿美元&#xff0c;从2022年第三季度的2011.27亿美元下降了24.1%。这也导致该公…...

软件测试面试在简历上写了“精通”后,拥有工作经验的我被面试官问到窒息...

前言 如果有真才实学&#xff0c;写个精通可以让面试官眼前一亮&#xff01; 如果是瞎写&#xff1f;基本就要被狠狠地虐一把里&#xff01; 最近在面试&#xff0c;我现在十分后悔在简历上写了“精通”二字… 先给大家看看我简历上的技能列表&#xff1a; 熟悉软件测试理…...

色环电容读数方法要点总结

🏡《总目录》 目录 1,概述2,读数方法3,颜色对照表3.1,颜色与电容值数字对照关系表3.2,颜色与10的指数数字对照关系表3.3,颜色与误差对照关系表4,总结1,概述 本文简单介绍色环电容的读数方法。 2,读数方法 如下图所示色环电容共有四个色环。最粗的被命名为第1环,依次…...

C++函数新思想和标准的输入和输出

欢迎来观看温柔了岁月.c的博客目前设有C学习专栏C语言项目专栏数据结构与算法专栏目前主要更新C学习专栏&#xff0c;C语言项目专栏不定时更新待C专栏完毕&#xff0c;会陆续更新C项目专栏和数据结构与算法专栏一周主要三更&#xff0c;星期三&#xff0c;星期五&#xff0c;星…...

华为OD机试真题Java实现【汽水瓶】真题+解题思路+代码(20222023)

汽水瓶 有这样一道智力题:“某商店规定:三个空汽水瓶可以换一瓶汽水。小张手上有十个空汽水瓶,她最多可以换多少瓶汽水喝?”答案是 5 瓶,方法如下:先用 9 个空瓶子换3瓶汽水,喝掉 3 瓶满的,喝完以后 4 个空瓶子,用 3 个再换一瓶,喝掉这瓶满的,这时候剩 2 个空瓶子。…...

WindownsPowershell中的单引号和双引号

WindownsPowershell中的单引号和双引号 目录标题WindownsPowershell中的单引号和双引号单引号对中,可以直接写双引号双引号对中,可以直接写单引号反引号 可以在 双引号对中表示转义双引号对中, 可以用 反引号双引号 表示一个双引号双引号对中, 可以用 反引号单引号 表示一个单引…...

【华为OD机试模拟题】用 C++ 实现 - 数组组成的最小数字(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...