当前位置: 首页 > news >正文

Leetcode 1834. Single-Threaded CPU (堆好题)

  1. Single-Threaded CPU
    Medium

You are given n​​​​​​ tasks labeled from 0 to n - 1 represented by a 2D integer array tasks, where tasks[i] = [enqueueTimei, processingTimei] means that the i​​​​​​th​​​​ task will be available to process at enqueueTimei and will take processingTimei to finish processing.

You have a single-threaded CPU that can process at most one task at a time and will act in the following way:

If the CPU is idle and there are no available tasks to process, the CPU remains idle.
If the CPU is idle and there are available tasks, the CPU will choose the one with the shortest processing time. If multiple tasks have the same shortest processing time, it will choose the task with the smallest index.
Once a task is started, the CPU will process the entire task without stopping.
The CPU can finish a task then start a new one instantly.
Return the order in which the CPU will process the tasks.

Example 1:

Input: tasks = [[1,2],[2,4],[3,2],[4,1]]
Output: [0,2,3,1]
Explanation: The events go as follows:

  • At time = 1, task 0 is available to process. Available tasks = {0}.
  • Also at time = 1, the idle CPU starts processing task 0. Available tasks = {}.
  • At time = 2, task 1 is available to process. Available tasks = {1}.
  • At time = 3, task 2 is available to process. Available tasks = {1, 2}.
  • Also at time = 3, the CPU finishes task 0 and starts processing task 2 as it is the shortest. Available tasks = {1}.
  • At time = 4, task 3 is available to process. Available tasks = {1, 3}.
  • At time = 5, the CPU finishes task 2 and starts processing task 3 as it is the shortest. Available tasks = {1}.
  • At time = 6, the CPU finishes task 3 and starts processing task 1. Available tasks = {}.
  • At time = 10, the CPU finishes task 1 and becomes idle.
    Example 2:

Input: tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]]
Output: [4,3,2,0,1]
Explanation: The events go as follows:

  • At time = 7, all the tasks become available. Available tasks = {0,1,2,3,4}.
  • Also at time = 7, the idle CPU starts processing task 4. Available tasks = {0,1,2,3}.
  • At time = 9, the CPU finishes task 4 and starts processing task 3. Available tasks = {0,1,2}.
  • At time = 13, the CPU finishes task 3 and starts processing task 2. Available tasks = {0,1}.
  • At time = 18, the CPU finishes task 2 and starts processing task 0. Available tasks = {1}.
  • At time = 28, the CPU finishes task 0 and starts processing task 1. Available tasks = {}.
  • At time = 40, the CPU finishes task 1 and becomes idle.

Constraints:

tasks.length == n
1 <= n <= 105
1 <= enqueueTimei, processingTimei <= 109

解法1:
这题感觉不容易。我一开始想的是把3个变量(enqueueTime, procTime, index)放到一个Node节点里面,然后用minHeap来做。
后来发现不好处理,因为每次CPU处理一个任务完后,会有一些新的curTime >= enqueueTime的任务变得可行,这个只用minHeap来做是不行的,因为我们不能一个个pop出来检查,再把可以的放回去。
参考的网上的做法。用pair<processTime, index>来作为minHeap的Node,用pair<int, pair<int, int>>> // <enQueueTime, pair<processTime, index>>来构成一个数组nodes,并排序。每次我们从minHeap里面取出top来处理后,调整curTime,再把数组nodes里面的可行的任务push到minHeap里面去。注意每次从minHeap里面只能取一个任务,不能用while,因为每个任务处理完以后,又有一些新的任务可行,这些新的任务可能比当前的top还应该先处理。

long long curTime = 0;class Solution {
public:vector<int> getOrder(vector<vector<int>>& tasks) {int n = tasks.size();//priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>> minHeap; //<processTime, index>priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> minHeap; //<processTime, index>vector<pair<int, pair<int, int>>> nodes; // <enQueueTime, pair<processTime, index>>vector<int> res;for (int i = 0; i < n; i++) {nodes.push_back({tasks[i][0], {tasks[i][1], i}});}sort(nodes.begin(), nodes.end());int index = 0;while (res.size() < n) {if (!minHeap.empty()) { //注意这里不能用while,因为每个任务处理完以后,又有一些新的任务可行,这些新的任务可能比当前的top还应该先处理。auto topNode = minHeap.top();minHeap.pop();res.push_back(topNode.second);curTime += topNode.first;} else if (index < n) {curTime = nodes[index].first;} else break;for (; index < n; index++) {if (curTime >= nodes[index].first) {minHeap.push(nodes[index].second);} else break;}}return res;}
};

相关文章:

Leetcode 1834. Single-Threaded CPU (堆好题)

Single-Threaded CPU Medium You are given n​​​​​​ tasks labeled from 0 to n - 1 represented by a 2D integer array tasks, where tasks[i] [enqueueTimei, processingTimei] means that the i​​​​​​th​​​​ task will be available to process at enque…...

21-数据结构-内部排序-交换排序

简介&#xff1a;主要根据两个数据进行比较从而交换彼此位置&#xff0c;以此类推&#xff0c;交换完全部。主要有冒泡和快速排序两种。 目录 一、冒泡排序 1.1简介&#xff1a; 1.2代码&#xff1a; 二、快速排序 1.1简介&#xff1a; 1.2代码&#xff1a; 一、冒泡排序…...

5-k8s-探针介绍

文章目录 一、探针介绍二、探针类型三、探针定义方式四、探针实例五、启动探针测试六、存活探针测试七、就绪探针测试 一、探针介绍 概念 在 Kubernetes 中 Pod 是最小的计算单元&#xff0c;而一个 Pod 又由多个容器组成&#xff0c;相当于每个容器就是一个应用&#xff0c;应…...

【网络安全 --- MySQL数据库】网络安全MySQL数据库应该掌握的知识,还不收藏开始学习。

四&#xff0c;MySQL 4.1 mysql安装 #centos7默认安装的是MariaDB-5.5.68或者65&#xff0c; #查看版本的指令&#xff1a;[rootweb01 bbs]# rpm -qa| grep mariadb #安装mariadb的最新版&#xff0c;只是更新了软件版本&#xff0c;不会删除之前原有的数据。 #修改yum源的配…...

【MyBatis系列】- 什么是MyBatis

【MyBatis系列】- 什么是MyBatis 文章目录 【MyBatis系列】- 什么是MyBatis一、学习MyBatis知识必备1.1 学习环境准备1.2 学习前掌握知识二、什么是MyBatis三、持久层是什么3.1 为什么需要持久化服务3.2 持久层四、Mybatis的作用五、MyBatis的优点六、参考文档一、学习MyBatis知…...

【Linux】Ubuntu美化bash【教程】

【Linux】Ubuntu美化bash【教程】 文章目录 【Linux】Ubuntu美化bash【教程】1. 查看当前环境中是否有bash2. 安装Synth-Shell3. 配置Synth-Shell4. 取消greeterReference 1. 查看当前环境中是否有bash 查看当前使用的bash echo $SHELL如下所示 sjhsjhR9000X:~$ echo $SHELL…...

微信小程序仿苹果负一屏由弱到强的高斯模糊

进入下面小程序可以体验效果&#xff0c;然后进入更多。查看模糊效果 一、创建小程序组件 二、代码 wxml: <view class"topBar-15"></view> <view class"topBar-14"></view> <view class"topBar-13"></view&…...

js中的new方法

new方法的作用&#xff1a;创建一个实例对象&#xff0c;并继承原对象的属性和方法&#xff1b; new对象内部操作&#xff1a; 1&#xff0c;创建一个新对象&#xff0c;将新对象的proto属性指向原对象的prototype属性&#xff1b; 2&#xff0c;构造函数执行环境中的this指向…...

机器学习-无监督算法之降维

降维&#xff1a;将训练数据中的样本从高维空间转换到低维空间&#xff0c;降维是对原始数据线性变换实现的。为什么要降维&#xff1f;高维计算难&#xff0c;泛化能力差&#xff0c;防止维数灾难优点&#xff1a;减少冗余特征&#xff0c;方便数据可视化&#xff0c;减少内存…...

ubuntu20.04下Kafka安装部署及基础使用

Ubuntu安装kafka基础使用 kafka 安装环境基础安装下载kafka解压文件修改配置文件启动kafka创建主题查看主题发送消息接收消息 工具测试kafka Assistant 工具连接测试基础连接连接成功查看topic查看消息查看分区查看消费组 Idea 工具测试基础信息配置信息当前消费组发送消息消费…...

汉得欧洲x甄知科技 | 携手共拓全球化布局,助力出海中企数智化发展

HAND Europe 荣幸获得华为云颁发的 GrowCloud 合作伙伴奖项&#xff0c;进一步巩固了其在企业数字化领域的重要地位。于 2023 年 10 月 5 日&#xff0c;HAND Europe 参加了华为云荷比卢峰会&#xff0c;并因其在全球拓展方面的杰出贡献而荣获 GrowCloud 合作伙伴奖项的认可。 …...

【Javascript保姆级教程】显示类型转换和隐式类型转换

文章目录 前言一、显式类型转换1.1 字符串转换1.2 数字转换1.3 布尔值转换 二、隐式类型转换2.1 数字与字符串相加2.2 布尔值与数字相乘 总结 前言 JavaScript是一种灵活的动态类型语言&#xff0c;这意味着变量的数据类型可以在运行时自动转换&#xff0c;或者通过显式类型转…...

C++算法前缀和的应用:分割数组的最大值的原理、源码及测试用例

分割数组的最大值 相关知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例&#xff1a;付视频课程 二分 过些天整理基础知识 题目 给定一个非负整数数组 nums 和一个整数 m &#xff0c;你需要将这个数组分成 m 个非空的连续子数组。 设计一个算法…...

gitlab自编译 源码下载

网上都是怎么用 gitlab&#xff0c;但是实际开发中有需要针对 gitlab 进行二次编译自定义实现功能的想法。 搜索了网上的资料以及在官网的查找&#xff0c;查到了如下 gitlab 使用 ruby 开发。 gitlab 下载包 gitlab/gitlab-ce - Packages packages.gitlab.com gitlab/gitl…...

SBD(Schottky Barrier Diode)与JBS(Junction Barrier Schottky)

SBD和JBS二极管都是功率二极管&#xff0c;具有单向导电性&#xff0c;在电路中主要用于整流、箝位、续流等应用。两者的主要区别在于结构和性能。 结构 SBD是肖特基二极管的简称&#xff0c;其结构由一个金属和一个半导体形成的金属-半导体结构成。 JBS是结势垒肖特基二极…...

HANA:计算视图-图形化Aggregation组件-踩坑小记(注意事项)

今天遇到在做HANA视图开发的时候&#xff0c;遇到一个事&#xff0c;一直以为是个BUG&#xff0c;可把我气坏了&#xff0c;具体逻辑是这样的&#xff0c;是勇图形化处理的&#xff0c;ACDOCA innerjoin 一个时间维度表&#xff0c;就这么简单&#xff0c;完全按照ACDOCA的主键…...

【milkv】更新rndis驱动

问题 由于windows升级到了11&#xff0c;导致rndis驱动无法识别到。 解决 打开设备管理器&#xff0c;查看网络适配器&#xff0c;没有更新会显示黄色的图标。 右击选择更新驱动...

基于混沌博弈优化的BP神经网络(分类应用) - 附代码

基于混沌博弈优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于混沌博弈优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.混沌博弈优化BP神经网络3.1 BP神经网络参数设置3.2 混沌博弈算法应用 4.测试结果…...

基于人工水母优化的BP神经网络(分类应用) - 附代码

基于人工水母优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于人工水母优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.人工水母优化BP神经网络3.1 BP神经网络参数设置3.2 人工水母算法应用 4.测试结果…...

【C++】哈希学习

哈希学习 unordered系列关联式容器哈希结构除留余数法哈希冲突闭散列线性探测二次探测 负载因子开散列开散列增容 闭散列 VS 开散列字符串哈希算法 线性探测 & 二次探测实现拉链法实现 unordered系列关联式容器 unordered系列关联式容器是从C11开始&#xff0c;STL提供的。…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...