Pytorch:cat、stack、squeeze、unsqueeze的用法
Pytorch:cat、stack、squeeze、unsqueeze的用法
torch.cat
在指定原有维度上链接传入的张量,所有传入的张量都必须是相同形状
torch.cat(tensors, dim=0, *, out=None) → Tensor
tensor:相同形状的tensor
dim:链接张量的维度,不能超过传入张量的维度
x = torch.tensor([[0, 1, 2]], dtype= torch.float)
y = torch.tensor([[3, 4, 5]], dtype= torch.int)
print(x.shape, y.shape)
print("-"*50)
z = torch.cat((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.cat((x, y), dim= 1)
print(z)
print(z.shape)

torch.stack
在一个新的维度上链接张量,输入张量都必须是相同形状的
torch.stack(tensors, dim=0, *, out=None) → Tensor
tensor:相同形状的张量
dim:插入的张量维度,在0和输出张量维度(比输入张量维度多一个)之间
x = torch.tensor([[0, 1, 2]])
y = torch.tensor([[3, 4, 5]])
print(x.shape, y.shape)
print("-"*50)
z = torch.stack((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 1)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 2)
print(z)
print(z.shape)

torch.squeeze
压缩张量,去掉输入张量中大小为1的维度,例如:(Ax1xBxCx1)->(AxBxC)
torch.squeeze(input, dim=None) → Tensor
input (Tensor):输入张量
dim (int or tuple of ints, optional):只压缩某个维度,可以不指定,就是压缩所有大小为1的维度
x = torch.tensor([[0, 1, 2]])
y = torch.rand(size= (1, 2, 1, 2, 1))
print(x.shape, y.shape)
print("-"*50)
z = torch.squeeze(x)
print(z)
print(z.shape)
print("-"*50)
z = torch.squeeze(y)
print(z)
print(z.shape)

torch.unsqueeze
在输入张量中指定位置插入一个大小为1的维度
torch.unsqueeze(input, dim) → Tensor
input (Tensor):输入张量
dim (int):插入维度的指定位置
x = torch.randn(size= (2,3))
print(x.shape)
print("-"*50)
z = torch.unsqueeze(x, 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.unsqueeze(x, 1)
print(z)
print(z.shape)

相关文章:
Pytorch:cat、stack、squeeze、unsqueeze的用法
Pytorch:cat、stack、squeeze、unsqueeze的用法 torch.cat 在指定原有维度上链接传入的张量,所有传入的张量都必须是相同形状 torch.cat(tensors, dim0, *, outNone) → Tensor tensor:相同形状的tensor dim:链接张量的维度,不能超过传入张…...
聊聊HttpClient的RedirectStrategy
序 本文主要研究一下HttpClient的RedirectStrategy RedirectStrategy org/apache/http/client/RedirectStrategy.java public interface RedirectStrategy {/*** Determines if a request should be redirected to a new location* given the response from the target ser…...
【1day】复现宏景OA KhFieldTree接口 SQL注入漏洞
注:该文章来自作者日常学习笔记,请勿利用文章内的相关技术从事非法测试,如因此产生的一切不良后果与作者无关。 目录 一、漏洞描述 二、资产测绘 三、漏洞复现 四、漏洞修复 一、漏洞描述 宏景OA是一款基于...
同为科技TOWE智能PDU引领数据中心机房远控用电安全高效
随着数据中心的环境变得更加动态和复杂,许多数据中心都在对数据中心管理人员施加压力,要求提高可用性,同时降低成本,提升效率。新一代高密度服务器和网络设备的投入使用,增加了对更高密度机架的需求,并对整…...
支付成功后给指定人员发送微信公众号消息
支付成功后给指定人员(导购)发送微信公众号消息 微信openid已录入数据库表 调用后台接口发送消息接口调用代码如下: //----add by grj 20231017 start //订单支付成功发送微信公众号消息$.ajax({url:http://www.menggu100.com:7077/strutsJsp…...
漏洞复现--安恒明御安全网关文件上传
免责声明: 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…...
简单的对称加密
异或 异或算法的好处便是数A和数B异或后,把结果再和数A异或便可得到B,或者和数B异或可重新得到数据A。利用异或的这个特性可简单实现数据的加密和解密算法。 恺撒密码 恺撒密码的替换方法是通过排列明文和密文字母表,密文字母表示通过将明…...
vue源码笔记之——响应系统
vue是一种声明式范式编程,使用vue者只需要告诉其想要什么结果,无需关心具体实现(vue内部做了,底层是利用命令式范式) 1. reactive为什么只能操作对象,对于基本数据类型,需要用ref? …...
Android Studio Giraffe | 2022.3.1
Android Gradle 插件和 Android Studio 兼容性 Android Studio 构建系统以 Gradle 为基础,并且 Android Gradle 插件 (AGP) 添加了几项专用于构建 Android 应用的功能。下表列出了各个 Android Studio 版本所需的 AGP 版本。 如果您的项目不受某个特定版本的 Andr…...
Spring Boot 3.0 已经就绪,您准备好了么?
Java 微服务开发框架王者 Spring 2014 年的 4 月,Spring Boot 1.0.0 正式发布。距离 1.0 版本的发布已经过去了 9 年多的时间,如今 Spring Boot 已经被 Java 开发者广泛使用,正如 JRebel 的 2022 年开发者生产力报告中提到的那样,…...
5+非肿瘤分析,分型+WGCNA+机器学习筛选相关基因
今天给同学们分享一篇非肿瘤分型机器学习WGCNA实验的生信文章“Identification of diagnostic markers related to oxidative stress and inflammatory response in diabetic kidney disease by machine learning algorithms: Evidence from human transcriptomic data and mou…...
算法课作业2 OJ for Divide and Conquer
https://vjudge.net/contest/581947 A - Ultra-QuickSort 题意 每次给n个无序的数,互不重复,问最少需要多少次必要的交换操作使n个数有序。 思路 看一眼想到逆序数,然后验证了逆序数的个数符合样例,但想了一个3 2 1的话实际上…...
申请全国400电话的步骤及注意事项
导语:随着企业的发展,越来越多的公司开始意识到全国400电话的重要性。本文将介绍申请全国400电话的步骤及注意事项,帮助企业顺利办理相关手续。 一、了解全国400电话的概念和优势 全国400电话是一种统一的客服热线号码,以“400”…...
C++ 的设计模式之 工厂方法加单例
在下面的示例中,我将演示如何创建一个工厂类,该工厂类能够生成四个不同类型的单例对象,每个单例对象都通过单独的工厂方法进行创建。 #include <iostream> #include <mutex>// Singleton base class class Singleton { protecte…...
Deploy、Service与Ingress
Deployment 自愈 介绍:控制Pod,使Pod拥有多副本,自愈,扩缩容等能力 # 清除所有Pod,比较下面两个命令有何不同效果? kubectl run mynginx --imagenginxkubectl create deployment mytomcat --imagetomcat:8.5.68 # 自…...
定制化推送+精细化运营,Mobpush助力《迷你世界》用户留存率提升23%
随着智能设备的市场下沉,手游市场迎来了爆发式增长,《迷你世界》作为一款于2015年推出的手游,一经问世就饱受欢迎。上线短短三年,迷你世界在应用商店下载量已经高达2亿次,周下载量两千万,稳居第一名&#x…...
深度学习零基础教程
代码运行软件安装: anaconda:一个管理环境的软件–>https://blog.csdn.net/scorn_/article/details/106591160(可选装) pycharm:一个深度学习运行环境–>https://blog.csdn.net/scorn_/article/details/106591160…...
简单测试一下 展锐的 UDX710 性能
最近在接触 联通5G CPE VN007 ,发现使用的是 展锐的Unisoc UDX710 CPU,正好简单的测试一下这颗CPU CPU信息 UDX710 是一颗 双核 ARM Cortex-A55 处理器,主频高达 1.35GHz processor : 0 BogoMIPS : 52.00 Features : fp…...
一百九十、Hive——Hive刷新分区MSCK REPAIR TABLE
一、目的 在用Flume采集Kafka中的数据直接写入Hive的ODS层静态分区表后,需要刷新表,才能导入分区和数据。原因很简单,就是Hive表缺乏分区的元数据 二、实施步骤 (一)问题——在Flume采集Kafka中的数据写入HDFS后&am…...
智慧公厕:探索未来城市环境卫生设施建设新标杆
智慧公厕是当代城市建设的一项重要举措,它集先进技术、人性化设计和智能管理于一体,为人们提供更为舒适、便捷和卫生的厕所环境。现代智慧公厕的功能异常丰富,从厕位监测到多媒体信息交互,从自动化清洁到环境调控,每一…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
32位寻址与64位寻址
32位寻址与64位寻址 32位寻址是什么? 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元(地址),其核心含义与能力如下: 1. 核心定义 地址位宽:CPU或内存控制器用32位…...
