[一带一路金砖 2023 CTF]Crypto
题1
题目描述:
from Crypto.Util.number import *
from flag import flag
import gmpy2
assert(len(flag)==38)
flag = bytes_to_long(flag)p = getPrime(512)
q = getPrime(512)e = 304
enc = pow(flag,e,p*q)
print(p)
print(q)
print(enc)
#9794998439882070838464987778400633526071369507639213778760131552998185895297188941828281554258704149333679257014558677504899624597863467726403690826271979
#10684338300287479543408040458978465940026825189952497034380241358187629934633982402116457227553161613428839906159238238486780629366907463456434647021345729
#88310577537712396844221012233266891147970635383301697208951868705047581001657402229066444746440502616020663700100248617117426072580419555633169418185262898647471677640199331807653373089977785816106098591077542771088672088382667974425747852317932746201547664979549641193108900510265622890793400796486146522028
题目分析:
e和phi不互素,同时flag长度比p和q小,故可直接用p或q中其中一个进行解
不互素考点应该是很熟了,这里就不多说咯
exp:
from Crypto.Util.number import *
from gmpy2 import *
e = 304
p = 9794998439882070838464987778400633526071369507639213778760131552998185895297188941828281554258704149333679257014558677504899624597863467726403690826271979
q = 10684338300287479543408040458978465940026825189952497034380241358187629934633982402116457227553161613428839906159238238486780629366907463456434647021345729
c = 88310577537712396844221012233266891147970635383301697208951868705047581001657402229066444746440502616020663700100248617117426072580419555633169418185262898647471677640199331807653373089977785816106098591077542771088672088382667974425747852317932746201547664979549641193108900510265622890793400796486146522028
d = invert(e // 16,(q - 1))
m_16 = pow(c,d,q)
e = 16
R.<x> = Zmod(q)[]
f=x^e-m_16
mps=f.monic().roots()
for i in mps:flag=long_to_bytes(int(i[0]))if b'flag' in flag:print(flag)
# flag{947b6543117e32730a93d1b43c98bc57}
题2
题目描述:
from Crypto.Util.number import *
from flag import flagdef gen_primes(nbit, imbalance):p = 2FACTORS = [p]while p.bit_length() < nbit - 2 * imbalance:factor = getPrime(imbalance)FACTORS.append(factor)p *= factor # 一些小素数的乘积rbit = (nbit - p.bit_length()) // 2while True:r, s = [getPrime(rbit) for _ in '01']_p = p * r * sif _p.bit_length() < nbit: rbit += 1if _p.bit_length() > nbit: rbit -= 1if isPrime(_p + 1): # 光滑FACTORS.extend((r, s))p = _p + 1breakFACTORS.sort()return (p, FACTORS)def genkey(nbit, imbalance, e):while True:p, FACTORS = gen_primes(nbit // 2, imbalance)if len(FACTORS) != len(set(FACTORS)):continueq, q_factors = gen_primes(nbit // 2, imbalance + 1)if len(q_factors) != len(set(q_factors)):continuefactors = FACTORS + q_factorsif e not in factors:breakn = p * qreturn n, (p, q)nbit = 2048
imbalance = 19
e = 0x10001m_1 = bytes_to_long(flag[:len(flag)//2])
m_2 = bytes_to_long(flag[len(flag)//2:])n, PRIMES = genkey(nbit, imbalance, e)
c_1 = pow(m_1, e, n)
c_2 = pow(e, m_2, n)
print('n =', n)
print('c_1 =', c_1)
print('c_2 =', c_2)
n = 35357873937435054001282352637015489837983629944603246522178730306982853403322122532742547568947348720656333165913123004754628275811015219202713548802943693917918541563761339716370762198583591114052428351599691659723508542841656789503328119510785085937979525249694594158534358323126435951391004918101544306531617516774746895733526101034675683422353395313765068796525289210446354001944876249728896374221851147854490650250688040658359437708219708086466006475368143815063574396167110037225787616695794333552173352376965108641554651899828690770801642222911404004972981226404611238384640428742441960433230255967882512572709
c_1 = 16634534464526067333266542688361417073505104370260567430743212030440685317214374585499981030226926044766739869847879031408549807956380355500301201488848875687853416183379064412708949479112570148317905419837975685732979495910124097985791487969870055434863407745827818697689550695419811875635482462317998019001874694405544022096737341305813428625314356741922244350713455318505335210523811539099373597334819062036544344240156834535244078408347762370087901917949527669361716338102428255611527880175371489236975227446140403028949555168795599427303842397557962531520805711901076455900612217613591150327899301858065771562916
c_2 = 28959414058046581387331073805593474819964554400846556519089342566960219426395093378840690033900219718180201586444279902099201314738785482187096282489335039754400853514399233561703766501981317579016015885985249393698030292377653287627063434792453444305041899628924704707327777803327634177387380885834429684833509758496969064593639077614464933018728667369508101718561232112365432775831642293382722453145808785853553029281098760388699782452404701217989853131800383523025244719015821981668238625535719639173942578430758429709476625832809897441275508034910613246129679480731733559701167577051633529935423253203666147846715
题目分析:
第一部分为Pollard’s p-1光滑
直接解
exp:
from Crypto.Util.number import *
from gmpy2 import *
n = 35357873937435054001282352637015489837983629944603246522178730306982853403322122532742547568947348720656333165913123004754628275811015219202713548802943693917918541563761339716370762198583591114052428351599691659723508542841656789503328119510785085937979525249694594158534358323126435951391004918101544306531617516774746895733526101034675683422353395313765068796525289210446354001944876249728896374221851147854490650250688040658359437708219708086466006475368143815063574396167110037225787616695794333552173352376965108641554651899828690770801642222911404004972981226404611238384640428742441960433230255967882512572709
c_1 = 16634534464526067333266542688361417073505104370260567430743212030440685317214374585499981030226926044766739869847879031408549807956380355500301201488848875687853416183379064412708949479112570148317905419837975685732979495910124097985791487969870055434863407745827818697689550695419811875635482462317998019001874694405544022096737341305813428625314356741922244350713455318505335210523811539099373597334819062036544344240156834535244078408347762370087901917949527669361716338102428255611527880175371489236975227446140403028949555168795599427303842397557962531520805711901076455900612217613591150327899301858065771562916
c_2 = 28959414058046581387331073805593474819964554400846556519089342566960219426395093378840690033900219718180201586444279902099201314738785482187096282489335039754400853514399233561703766501981317579016015885985249393698030292377653287627063434792453444305041899628924704707327777803327634177387380885834429684833509758496969064593639077614464933018728667369508101718561232112365432775831642293382722453145808785853553029281098760388699782452404701217989853131800383523025244719015821981668238625535719639173942578430758429709476625832809897441275508034910613246129679480731733559701167577051633529935423253203666147846715
e = 0x10001
def Pollards_p_1(N):n = 2a = 2while True:a = pow(a,n,N)res = gcd(a-1,N)print(n)if res != 1 and res != N:print('p = ',res)return resn += 1
# p = Pollards_p_1(n)
p = 246193986637546903265592815609577026241302357122314925452960382002903884663793124671589668426466042284818011792326340585156178366427487449232598147821980481083788083405892143123015262709410005719036034457206601471709604309275710937299133844390087441265560849989236470128705724138785359931092408727167182527227
q = n // p
d = inverse(e,(p - 1)*(q - 1))
print(long_to_bytes(pow(c_1,d,n))) # flag{5eec62654a551c
之后离散对数,变下域
c_2 = 28959414058046581387331073805593474819964554400846556519089342566960219426395093378840690033900219718180201586444279902099201314738785482187096282489335039754400853514399233561703766501981317579016015885985249393698030292377653287627063434792453444305041899628924704707327777803327634177387380885834429684833509758496969064593639077614464933018728667369508101718561232112365432775831642293382722453145808785853553029281098760388699782452404701217989853131800383523025244719015821981668238625535719639173942578430758429709476625832809897441275508034910613246129679480731733559701167577051633529935423253203666147846715
e = 0x10001
p = 246193986637546903265592815609577026241302357122314925452960382002903884663793124671589668426466042284818011792326340585156178366427487449232598147821980481083788083405892143123015262709410005719036034457206601471709604309275710937299133844390087441265560849989236470128705724138785359931092408727167182527227
G = Zmod(p)
print(long_to_bytes(ZZ(discrete_log(G(c_2),G(e))))) # 8cb2280fe9405f908f}
关键词:
离散对数变域
唉,都是出的原题啊。不过没事,还是学到了一个没接触过的小点
相关文章:
[一带一路金砖 2023 CTF]Crypto
题1 题目描述: from Crypto.Util.number import * from flag import flag import gmpy2 assert(len(flag)38) flag bytes_to_long(flag)p getPrime(512) q getPrime(512)e 304 enc pow(flag,e,p*q) print(p) print(q) print(enc) #9794998439882070838464987…...
FPGA【Verilog语法】
关键字: and always assign begin buf bufif0 bufif1 case casex casez cmos deassign default defparam disable edge else end endcase endfunction endprimitive endmodule endspecify endtable …...

Flume 整合 Kafka
1.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合后的数据输入到 Storm 等分布式计算框架中,可能就会超过集群的处理能力,这时采用 Kaf…...

VUE:侧边弹出栏组件,组件中有树状图,搜索框可筛选树状图节点,可收缩
作者:CSDN @ _乐多_ 本文记录了一个侧边弹出栏组件代码。代码即插即用。 弹出栏中有树状图,搜索框,可收缩。 其中,搜索框可筛选树状图节点。点击右侧小按钮可以收缩弹出框,点击X号也可以收缩弹出框。 文章目录 一、组件代码代码依赖element-plus库。且需要下载几个svg图…...

如何使用pytorch定义一个多层感知神经网络模型——拓展到所有模型知识
# 导入必要的库 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, random_split import torchvision.transforms as transforms import torchvision.datasets as datasets# 定义MLP模型 class MLP(nn.Module):def __…...

为什么引入SVG文件,给它定义属性不生效原理分析
背景: 我使用antd 的Icon组件引入SVG图片,但给svg图片定义styles样式时,不生效,为什么呢? 我们平时用antd组件库的 < ArrowRightOutlined style{{color: red }}>时为什么会生效呢,但我图一这样定义就…...
Integer包装类常用方法和属性
包装类 什么是包装类Integer包装类常用方法和属性 什么是包装类 Java 包装类是指为了方便处理基本数据类型而提供的对应的引用类型。Java 提供了八个基本数据类型(boolean、byte、short、int、long、float、double、char),每个基本数据类型对…...

基于Spring boot轻松实现一个多数据源框架
Spring Boot 提供了 Data JPA 的包,允许你使用类似 ORM 的接口连接到 RDMS。它很容易使用和实现,只需要在 pom.xml 中添加一个条目(如果使用的是 Maven,Gradle 则是在 build.gradle 文件中)。 <dependencies>&l…...
vue前端实现打印功能并约束纸张大小---调用浏览器打印功能打印页面部分元素并固定纸张大小
需求是打印指定div实现小票打印功能。调用浏览器的自带打印功能只能实现打印可视区域,所以这里采用截图新窗口打开打印去实现此需求。 1.安装html2canvas库实现截图功能 npm install html2canvas --save2.在需要进行截图和打印的组件中,引入html2canvas…...

音乐播放器蜂鸣器ROM存储歌曲verilog,代码/视频
名称:音乐播放器蜂鸣器ROM存储歌曲 软件:Quartus 语言:Verilog 代码功能: 设计音乐播放器,要求至少包含2首歌曲,使用按键切换歌曲,使用开发板的蜂鸣器播放音乐,使用Quartus内的RO…...

Arduino Nano 引脚复用分析
近期开发的项目为气体传感器采集仪,综合需求,选取NANO作为主控,附属设备有 oled、旋转编码器、H桥板、蠕动泵、开关、航插等,主要是用现有接口怎么合理配置实现功能。 不管stm32 还是 Arduino 都要看清引脚图 D2 D3 引脚是两个外…...
Go 函数多返回值错误处理与error 类型介绍
Go 函数多返回值错误处理与error 类型介绍 文章目录 Go 函数多返回值错误处理与error 类型介绍一、error 类型与错误值构造1.1 Error 接口介绍1.2 构造错误值的方法1.2.1 使用errors包1.2.2 自定义错误类型 二、error 类型的好处2.1 第一点:统一了错误类型2.2 第二点…...
数论分块
本质就是利用取整分数值的块状分布。 UVA11526 H(n) 题意: 求 ∑ i 1 n n i \sum_{i1}^{n} \frac {n}{i} ∑i1nin。 解析: ⌊ n i ⌋ \lfloor \frac{n}{i} \rfloor ⌊in⌋ 只有 O ( n ) O(\sqrt n) O(n ) 种取值,考虑将相同值同…...

宏任务与微任务,代码执行顺序
js引擎工作进程是同步的。事件循环机制,事件队列。 脚本代码执行顺序,是先执行同步代码,遇到微任务,就把它推进任务队列中。每个宏任务完成后,再执行下一个宏任务。 宏任务有哪些: i/o读写 定时器setTi…...

正方形(Squares, ACM/ICPC World Finals 1990, UVa201)rust解法
有n行n列(2≤n≤9)的小黑点,还有m条线段连接其中的一些黑点。统计这些线段连成了多少个正方形(每种边长分别统计)。 行从上到下编号为1~n,列从左到右编号为1~n。边用H i j和V i j表示…...

【算法设计与分析qwl】伪码——顺序检索,插入排序
伪代码: 例子: 改进的顺序检索 Search(L,x)输入:数组L[1...n],元素从小到大排序,数x输出:若x在L中,输出x位置下标 j ,否则输出0 j <- 1 while j<n and x>L[j] do j <- j1 if x<…...
Uniapp路由拦截-自定义路由白名单
步骤一:新建routerIntercept.js文件 步骤二:routerIntercept文件中写入:(根据自己需要修改whiteList白名单中的页面路径和自己的逻辑处理) import Vue from vue // 白名单 const whiteList = [/pages/public/login,/pages/public/privacyAgreement, ]export default asy…...

在中国可以使用 HubSpot 吗?
当谈到市场营销和客户关系管理工具时,HubSpot通常是一家企业的首选。然而,对于许多中国的企业来说,一个重要的问题是:在中国可以使用HubSpot吗?这个问题涉及到不同的方面,包括政策法规、社交媒体平台、语言…...
Java的基础应用
Java是一种广泛应用于软件开发的编程语言,基础应用涵盖了很多方面。以下是Java的一些基础应用方面的介绍: 1. 控制流语句:Java中的程序流程控制语句分为选择语句和循环语句。选择语句包括if-else语句和switch语句,循环语句包括fo…...

【excel】列转行
列转行 工作中有一些数据是列表,现在需要转行 选表格内容:在excel表格中选中表格数据区域。点击复制:在选中表格区域处右击点击复制。点击选择性粘贴:在表格中鼠标右击点击选择性粘贴。勾选转置:在选择性粘勾选转置选…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
flow_controllers
关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...