分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
目录
- 分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果





基本描述
1.Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化双向长短期记忆网络(BiLSTM)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
- 完整程序和数据下载方式2(资源处直接下载):Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problemscurve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测
分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测 目录 分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-BiLSTM鲸鱼算法…...
35 机器学习(三):混淆矩阵|朴素贝叶斯|决策树|随机森林
文章目录 分类模型的评估混淆矩阵精确率和召回率 接口介绍其他的补充 朴素贝叶斯基础原理介绍拉普拉斯平滑下面给出应用的例子朴素贝叶斯的思辨 决策树基础使用基本原理信息熵信息增益信息增益率Gini指数 剪枝api介绍 随机森林------集成学习初识基本使用api介绍 分类模型的评估…...
ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1+
该错误提示表示您的 OpenSSL 版本过低,无法兼容 urllib3 v2.0。 解决此问题的方法是升级您的 OpenSSL 版本至 1.1.1 或以上。具体操作如下: 方法一: 检查您的 OpenSSL 版本,使用以下命令: openssl version 如果您的…...
webrtc gcc算法(1)
老的webrtc gcc算法,大概流程: 这两个拥塞控制算法分别是在发送端和接收端实现的, 接收端的拥塞控制算法所计算出的估计带宽, 会通过RTCP的remb反馈到发送端, 发送端综合两个控制算法的结果得到一个最终的发送码率,并以…...
2022年亚太杯APMCM数学建模大赛C题全球变暖与否全过程文档及程序
2022年亚太杯APMCM数学建模大赛 C题 全球变暖与否 原题再现: 加拿大的49.6C创造了地球北纬50以上地区的气温新纪录,一周内数百人死于高温;美国加利福尼亚州死亡谷是54.4C,这是有史以来地球上记录的最高温度;科威特53…...
苹果开发者 Xcode发布TestFlight全流程
打包前注意事项 使用Xcode导出安装包之前,必须先确认账户的所有合约是否全部同意,如果有不同意的,在出包的时候会弹出报错 这是什么意思 这意味着您有一些需要在应用商店连接上验证的协议(protocol)/契约(Contract)。解决方案 连接到应用商店…...
Spring Security—Servlet 应用架构
目录 一、Filter(过滤器)回顾 二、DelegatingFilterProxy 三、FilterChainProxy 四、SecurityFilterChain 五、Security Filter 六、打印出 Security Filter 七、添加自定义 Filter 到 Filter Chain 八、处理 Security 异常 九、保存认证之间的…...
排序优化:如何实现一个通用的、高性能的排序函数?
文章来源于极客时间前google工程师−王争专栏。 几乎所有的编程语言都会提供排序函数,比如java中的Collections.sort()。在平时的开发中,我们都是直接使用,这些排序函数是如何实现的?底层都利用了哪种排序算法呢? 问题…...
车载开发学习——CAN总线
CAN总线又称为汽车总线,全程为“控制器局域网(Controller Area Network)”,即区域网络控制器,它将区域内的单一控制单元以某种形式连接在一起,形成一个系统。在这个系统内,大家以一种大家都认可…...
2023年知名国产数据库厂家汇总
随着信创国产化的崛起,大家纷纷在寻找可替代的国产数据库厂家。这里小编就给大家汇总了一些国内知名数据库厂家,仅供参考哦! 2023年知名国产数据库厂家汇总 1、人大金仓 2、瀚高 3、高斯 4、阿里云 5、华为云 6、浪潮 7、达梦 8、南大…...
【ARM Coresight SoC-400/SoC-600 专栏导读】
文章目录 1. ARM Coresight SoC-400/SoC-600 专栏导读目录1.1 Coresight 专题1.1.1 Performance Profiling1.1.2 ARM Coresight DS-5 系列 1. ARM Coresight SoC-400/SoC-600 专栏导读目录 本专栏全面介绍 ARM Coresight 系统 及SoC-400, SoC-600 中的各个组件。 1.1 Coresigh…...
在Go中创建自定义错误
引言 Go提供了两种在标准库中创建错误的方法,[errors.New和fmt.Errorf],当与用户交流更复杂的错误信息时,或在调试时与未来的自己交流时,有时这两种机制不足以充分捕获和报告所发生的情况。为了传达更复杂的错误信息并实现更多的…...
Vue.js2+Cesium1.103.0 十三、通过经纬度查询 GeoServer 发布的 wms 服务下的 feature 对象的相关信息
Vue.js2Cesium1.103.0 十三、通过经纬度查询 GeoServer 发布的 wms 服务下的 feature 对象的相关信息 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><div style"position: absolute;z-index: 999;bott…...
使用STM32怎么喂狗 (IWDG)
STM32F1 的独立看门狗(以下简称 IWDG)。 STM32F1内部自带了两个看门狗,一个是独立看门狗 IWDG,另一个是窗口看门狗 WWDG, 本章只介绍独立看门狗 IWDG,窗口看门狗 WWDG 会在后面章节介绍。 本章要实现的功能…...
GEE:计算和打印GEE程序的执行时间
作者:CSDN @ _养乐多_ 本文记录了计算和打印程序的执行时间的Google Earth Engine (GEE)代码,并举例说明。 大家在执行GEE代码的时候,有时候为了对比两个不同的脚本,不知道代码执行花费了多少时间。本文记录了打印代码执行时间的函数,并举了一个应用案例说明。可以知道…...
GDPU 数据结构 天码行空5
一、实验目的 1.掌握队列的顺序存储结构 2.掌握队列先进先出运算原则在解决实际问题中的应用 二、实验内容 仿照教材顺序循环队列的例子,设计一个只使用队头指针和计数器的顺序循环队列抽象数据类型。其中操作包括:初始化、入队…...
SQLAlchemy学习-12.查询之 order_by 按desc 降序排序
前言 sqlalchemy的query默认是按id升序进行排序的,当我们需要按某个字段降序排序,就需要用到 order_by。 order_by 排序 默认情况下 sqlalchemy 的 query 默认是按 id 升序进行排序的 res session.query(Project).all() print(res) # [<Project…...
如何轻松打造数字人克隆系统+直播系统?OEM教你快速部署数字人SaaS系统源码
数字人做为国内目前最热门的人工智能创业赛道,连BAT都在跑步入局,中小企业更是渴望不渴及。但随着我国数字人头部品牌企业温州专帮信息科技有限公司旗下灰豚AI数字人平台的开源。使得中小企业零门槛可以轻松打造灰豚AI数字人一模一样的平台。灰豚数字人A…...
药物滥用第四篇介绍
OXY: 羟考酮(Oxycodone,OXY),分子式为C18H21NO4,是一种半合成的蒂巴因衍生物。羟考酮为半合成的纯阿片受体激动药,其作用机制与吗啡相似,主要通过激动中枢神经系统内的阿片受体而起镇…...
Apache Doris (四十三): Doris数据更新与删除 - Update数据更新
🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. Update数据更新原理...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
