当前位置: 首页 > news >正文

MSQL系列(五) Mysql实战-索引最左侧匹配原则分析及实战

Mysql实战-索引最左侧匹配原则分析及实战

前面我们讲解了索引的存储结构,B+Tree的索引结构,以及索引最左侧匹配原则,Explain的用法,今天我们来实战一下 最左侧匹配原则

1.联合索引最左侧匹配原则

联合索引有一个最左侧匹配原则
最左匹配原则指的是,当使用联合索引进行查询时,MySQL会优先使用最左边的列进行匹配,然后再依次向右匹配。

假设我们有一个表,包含三个列:A、B、C
创建联合索引(A,B,C) 等同于创建了索引 A, 索引 (A,B), 索引 (A,B,C)

  1. 我们使用(A,B,C)这个联合索引进行查询时,MySQL会先根据列A进行匹配
  2. 再根据列B进行匹配,最后再根据列C进行匹配。
  3. 如果我们只查询了(A,B)这两个列,而没有查询列C,那么MySQL只会使用(A,B)这个前缀来进行索引匹配,而不会使用到列C
  4. 如果我们要查询 了(B,C)这两个列,而没有查询列A,那么MySQL索引就会失效,导致找不到索引,因为最左侧匹配原理
  5. 所以 我们应该尽量把最常用的列放在联合索引的最左边,这样可以提高查询效率
2.实战

新建表结构 user, user_info

#新建表结构 user
CREATE TABLE `user` (`id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键',`id_card` char(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL COMMENT '身份证ID',`user_name` char(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL COMMENT '用户名字',`age` int NOT NULL COMMENT '年龄',PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='用户表'
  1. id 主键id列
  2. id_card 身份证id
  3. user_name 用户姓名
  4. age 年龄

先插入测试数据, 插入 5条测试数据

INSERT INTO `test`.`user` (`id`, `id_card`, `user_name`, `age`) VALUES (1, '11', 'aa', 10);
INSERT INTO `test`.`user` (`id`, `id_card`, `user_name`, `age`) VALUES (2, '22', 'bb', 20);
INSERT INTO `test`.`user` (`id`, `id_card`, `user_name`, `age`) VALUES (3, '33', 'cc', 30);
INSERT INTO `test`.`user` (`id`, `id_card`, `user_name`, `age`) VALUES (4, '44', 'dd', 40);
INSERT INTO `test`.`user` (`id`, `id_card`, `user_name`, `age`) VALUES (5, '55', 'ee', 50);
2.1 创建 id_card,user_name,age的索引列
alter table user add index idx_card_name_age(id_card,user_name,age);

创建索引成功
在这里插入图片描述
我们现在user表只有一个新建的索引
在这里插入图片描述

2.2. 查B,C列信息
  • (A,B,C)的联合索引, 单纯的查B, 或者查BC是无法用到索引的,走的是全部索引扫描type=index类型
    查询user_name, 查询语句中没有id_card
EXPLAIN SELECT * FROM `user` where user_name = "aa";

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 单纯的查C,同样的结果,走的是全部索引扫描type=index类型
    查询age,查询语句中没有id_card
EXPLAIN SELECT * FROM `user` where age = 10;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查BC,同样的结果,走的是全部索引扫描type=index类型
    查询user_name 和 age,查询语句中没有id_card
EXPLAIN SELECT * FROM `user` where user_name = "aa"  and age = 10;

执行结果
在这里插入图片描述

2.3查询A列的相关信息

上面我们看到了只要查询语句中不包含A的字段信息,所有的索引全都不生效,扫描全部索引信息,这不是我们想要的

这也就是最左侧匹配原则导致的,所以我们在查询的时候,一定要从最左侧开始查询,也就是查询语句一定要有A查询条件,否则索引不生效

  • (A,B,C)的联合索引, 查A,type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=100%,过滤占比百分百,效率很高
    只查询 id_card 字段
EXPLAIN SELECT * FROM `user` where id_card = "11" ;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查A,B列,相同的结果, type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=100%,过滤占比百分百,效率很高
    查询 id_card 及 user_name 字段
EXPLAIN SELECT * FROM `user` where id_card = "11" and user_name = "aa" ;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查A,C列,相同的结果, type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=20% ,过滤占比 20%,意思是所有的5索引数据,找到了1条数据
    效率不算高,也不建议这样使用
    查询 id_card 及 age 字段
EXPLAIN SELECT * FROM `user` where id_card = "11" and user_name = "aa" ;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查A,B,C 列,相同的结果, type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=100%,过滤占比百分百,效率很高
    查询 id_card 及 user_name 及age 字段
EXPLAIN SELECT * FROM `user` where id_card = "11" and user_name = "aa" and age =10 ;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查C,A,B 列,查询语句乱序, 看下查询结果,依旧是相同的结果, type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=100%,过滤占比百分百,效率很高
    查询 id_card 及 user_name 及age 字段, 查询条件的乱序,不会影响到索引的信息
EXPLAIN SELECT * FROM `user` where age =10  and user_name = "aa" and id_card = "11" ;

执行结果
在这里插入图片描述

  • (A,B,C)的联合索引, 查C,A,B 列,查询语句乱序, 看下查询结果,依旧是相同的结果, type=ref类型使用了索引,索引扫描行数rows=1,只扫描了一行,精确查找, filtered=100%,过滤占比百分百,效率很高
    查询 id_card 及 user_name 及age 字段, 查询条件的乱序,不会影响到索引的信息
EXPLAIN SELECT * FROM `user` where age =10  and user_name = "aa" and id_card = "11" ;

执行结果
在这里插入图片描述

3. 如何知道具体用了那个索引?

我们可以通过 explain key_len计算到底使用了那个索引字段

通过刚才的验证,我们了解不同的索引,使用的ken_len长度不同,到底这个key_len如何计算,我们如何知道到底用了那个索引?

首先看下数据库编码类型 utf8mb4 编码方式
在这里插入图片描述

然后 看下表结构
id_card notNull
user_name 允许null
age 允许null
在这里插入图片描述

然后开始计算 ken_len的长度

  • 字符集编码: 字符 如 utf8mb4 = 4 ,utf8 = 3, gbk = 2, latin1 = 1, 数字int =4位
  • 列是否为空: NULL(+1),NOT NULL(+0)
  • 列类型为字符: varchar(+2), char(+0)
    到底如何计算key_len呢? key_len = (字段长度)* 编码格式 + (notNull/null)+ 列类型, 我们看下是否真的是这样
EXPLAIN SELECT * FROM `user` where id_card = "11" ;

使用了 id_card 单个字段的索引
key_len
= (char(32)) 4 + (notNull)0 + (char)0
= 32
4 +0 +0 = 128
在这里插入图片描述

EXPLAIN SELECT * FROM `user` where user_name = "aa" and id_card = "11" ;

使用了 id_card 和 user_name 2个字段的索引, user_name允许为null +1,
key_len
= (char(32)) * 4 + (notNull)0 + (char)0 + (char(32)) 4 + (Null)1 + (char)0
= 32
4 + 32*4 +1 = 257
在这里插入图片描述

EXPLAIN SELECT * FROM `user` where user_name = "aa" and id_card = "11"  and age =10;

使用了 id_card 和 user_name 及 age 三个字段的索引, user_name允许为null +1, age允许为null +1, age类型为int,占4位
key_len
= (char(32)) * 4 + (notNull)0 + (char)0 + (char(32)) 4 + (Null)1 + (char)0 + (int)4 + (Null)1 + (int)0
= 32
4 + 32*4 +1 + 5= 262
在这里插入图片描述

没有用到某个字段的索引,ken_len不会计算它的长度,比如A,C列的查询 id_card和age的查询,不会用到age的索引,只用到了id_card,key_len只会计算 id_card的长度

EXPLAIN SELECT * FROM `user` where id_card = "11" and age=10 ;

key_len = (char(32)) * 4 + (notNull)0 + (char)0 = 128, 只用到了id_card的索引信息
在这里插入图片描述


至此,我们了解了联合索引的最左侧匹配原则,也知道了如何去优化查询语句,才能使用到索引,并且知道了key_len分析具体使用了那些索引

相关文章:

MSQL系列(五) Mysql实战-索引最左侧匹配原则分析及实战

Mysql实战-索引最左侧匹配原则分析及实战 前面我们讲解了索引的存储结构,BTree的索引结构,以及索引最左侧匹配原则,Explain的用法,今天我们来实战一下 最左侧匹配原则 1.联合索引最左侧匹配原则 联合索引有一个最左侧匹配原则 …...

react|redux状态管理

react|redux状态管理 参考官网:https://cn.redux-toolkit.js.org/tutorials/quick-start 状态管理使用流程 1、安装: npm install react-redux reduxjs/toolkit2、创建store.js 通过configureStore的hook对reducer(或slice)进行…...

Python之旅----判断语句

布尔类型和比较运算符 布尔类型 布尔类型的定义 布尔类型的字面量: True 表示真(是、肯定) False 表示假 (否、否定) 也就是布尔类型进行判断,只会有2个结果:是或否 定义变量存储布尔类型…...

【JavaEE】文件操作和IO

1 什么是文件? 针对硬盘这种持久化存储的I/O设备,当我们想要进行数据保存时,往往不是保存成一个整体,而是独立成一个个的单位进行保存,这个独立的单位就被抽象成文件的概念 2 文件路径 文件路径就是指咱们文件系统中…...

python使用dataset快速使用SQLite

目录 一、官网地址 二、安装 三、 快速使用 一、官网地址 GitHub - pudo/dataset: Easy-to-use data handling for SQL data stores with support for implicit table creation, bulk loading, and transactions. 二、安装 pip install dataset 如果是mysql,则…...

Python 练习100实例(21-40)

Python 练习实例21 题目:猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。到第10天…...

“创新启变 聚焦增长”极狐(GitLab)媒体沟通会,共话智能时代软件开发新生态

10 月 18 日 北京 昨日,全球领先 AI 赋能 DevSecOps 一体化平台极狐(GitLab) 在北京举办了主题为“创新启变 聚焦增长”的媒体沟通会。极狐(GitLab) CEO 柳钢就“中国企业数字化转型、软件研发、技术自主可控等热点问题,以及 AI 大模型时代下&#xff0c…...

【ChatGLM2-6B】在只有CPU的Linux服务器上进行部署

简介 ChatGLM2-6B 是清华大学开源的一款支持中英双语的对话语言模型。经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,具有62 亿参数的 ChatGLM2-6B 已经能生成相当符合人类偏好的回答。结合模型量化技术,用户可以在消费级的显卡上进行本地部署&…...

Xilinx IP 10 Gigabit Ethernet Subsystem IP

Xilinx IP 10 Gigabit Ethernet Subsystem IP 10 Gb 以太网子系统在 10GBASE-R/KR 模式下提供 10 Gb 以太网 MAC 和 PCS/PMA,以提供 10 Gb 以太网端口。发送和接收数据接口使用 AXI4 流接口。可选的 AXI4-Lite 接口用于内部寄存器的控制接口。 • 设计符合 10 Gb 以太网规范…...

ubuntu下yolox tensorrt模型部署

TensorRT系列之 Windows10下yolov8 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov8 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov7 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov6 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov5 tensorrt模型加速…...

外汇天眼:外汇投资入门必看!做好3件事,任何人都能提高交易胜率

近年来外汇市场愈来愈热络,许多投资人看准世界金融变化的趋势,纷纷开始入场布局,期望把握行情大赚一笔。 如果你之前没有做过外汇交易,建议最好先透过「外汇天眼学院」学习各种相关的知识与技术分析,等到对外汇有一定的…...

idea dubge 详细

目录 一、概述 二、debug操作分析 1、打断点 2、运行debug模式 3、重新执行debug 4、让程序执行到下一次断点后暂停 5、让断点处的代码再加一行代码 6、停止debug程序 7、显示所有断点 8、添加断点运行的条件 9、屏蔽所有断点 10、把光标移到当前程序运行位置 11、单步跳过 12、…...

短视频矩阵系统/pc、小程序版独立原发源码开发搭建上线

短视频剪辑矩阵系统开发源码----源头搭建 矩阵系统源码主要有三种框架:Spring、Struts和Hibernate。Spring框架是一个全栈式的Java应用程序开发框架,提供了IOC容器、AOP、事务管理等功能。Struts框架是一个MVC架构的Web应用程序框架,用于将数…...

Linux不同格式的文件怎么压缩和解压

Linux不同格式的文件怎么压缩和解压 tar介绍不同格式文件压缩和解压 tar介绍 tar(tape archive)是一个在Unix和类Unix操作系统中用于文件打包和归档的命令行工具。它通常与其他工具(例如gzip、bzip2、xz)一起使用来创建归档文件并…...

Java 领域模型之失血、贫血、充血、胀血模型

1.失血模型 失血模型仅仅包含数据的定义和getter/setter方法,业务逻辑和应用逻辑都放到服务层中。这种类在Java中叫POJO。 action service: 核心业务(复杂度:重) model:简单Set Get dao :数据持…...

ifndef是什么,如何使用?

引言 使用HbuilderX uni-ui模板创建的uni-app项目,main.js文件中看到有如下的注释: // #ifndef VUE3 ...... // #endif // #ifdef VUE3 ...... // #endif 相信很多没有uini-app项目开发经验的朋友,初次接触uni-app项目,可…...

PXIE板卡,4口QSFP+,PCIE GEN3 X8,XILINX FPGA XCVU3P设计

PXIE板卡,4口QSFP,PCIE GEN3 X8,基于XILINX FPGA XCVU3P设计。 1:电路拓扑 ● 支持利用 EEPROM 存储数据; ● 电源时序控制和总功耗监控; 2:电路调试 3:测试 PCIE gen3 x8&#…...

数据分析:密度图

目前拥有的数据如图,三列分别对应瑕疵种类,对应的置信 度,x方向坐标。 现在想要做的事是观看瑕疵种类和置信度之间的关系。 要显示数据分布的集中程度,可以使用以下几种常见的图形来观察: 1、箱线图(Box P…...

docker load and build过程的一些步骤理解

docker load 命令执行原理 “docker load” command, the following steps are followed to load an image from a specified tar file to the local image repository: Parsing the tar file: Docker first parses the tar file to check its integrity and verify the form…...

批量处理图像模板

以下是一个Python模板,用于批量处理图像并将处理后的图像保存在另一个文件夹中。在此示例中,将使用Pillow库来处理图像,可以使用其他图像处理库,根据需要进行修改。   首先,确保已经安装了Pillow库,可以使…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...