GoogleNet论文精读
- 论文名:Going depper with convolutions
- 论文下载地址:https://github.com/jixiuy/paper
- 引言第一段:背景+成绩
- 1*1的卷积在channel上升维和降维,channel融合,计算方法上等价于FNN
- GAP(全局平均池化):每个cov都利用相同维度的平均池化层进行处理,图片都进行用标量来代替特征,类似Flatten的作用,结果可以提升1-2个点
- Related work如果是老手可读可不读,如果是新生,帮助你快速进入领域的背景知识
- 用有特定值的卷积核对图像进行处理的核叫过滤核 filter core
- 总结回顾之前的问题,然后讲我是怎么解决的
- Inception的概念:
Inception块由四条并行路径组成。前三条路径使用窗口大小为1×1、3×3和5×5的卷积层,从不同空间大小中提取信息。中间的两条路径在输入上执行1×1卷积,以减少通道数,从而降低模型的复杂性。第四条路径使用3×3最大汇聚层,然后使用1×1卷积层来改变通道数。这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。《动手学深度学习》
- 有些工作只是理论上有用,不能应用到现实生活
- 像谷歌的一些论文比较难懂,开始没读懂可以撂在那,之后他会解释
- 在论文里对引用论文的解释要到位
- depth:神经网络的堆叠层数。width:神经网络:节点数量;卷积:卷积核的数量。
- 没有必要读论文里一些不相关的内容,可以用到了再回过头来看。
- 解决小数据集容易过拟合,大数据集获取代价大:移除全连接用稀疏连接
- 神经网络(密集)
- 卷积神经网络(稀疏)
- 如果不对称不能够并行运算
- LeNet: 第一层卷积的feature map送入第二层卷积的时候,随机的送feature map而不是全部送。计算上不高效。
- AelxNet:全部送入下一层,更快的并行计算
- NAS:自动构建神经网络的工具
- Inception四条路分别提取不同尺度的信息,通过Padding来保证输出尺寸相同,在通道维度上拼接。每条路是密集的,4条路整体式稀疏的,因为和传统的一条路的形式不一致。
- stride减少的是空间维度,channel减少的是通道维度
- Stage可以方便的进行网路的缩放,每相同Stage中空间维度不变,不同Stage中空间维度可变,所以在每个相邻Stage中间需要用池化进行空间维度的变化,通道数比较随意,空间维度不能随意。
- GoogleNet网络结构:patch size指的是卷积核的尺寸
- Inception网络结构:
- 卷积大小计算公式:对于输入大小为 (H, W) 的图像或特征图,卷积核大小为 (K, K),步幅为 S,填充大小为 P,则输出大小为:
( ⌊ H + 2 P − K S ⌋ + 1 ) × ( ⌊ W + 2 P − K S ⌋ + 1 ) \left( \left\lfloor \frac{{H + 2P - K}}{{S}} \right\rfloor + 1 \right) \times \left( \left\lfloor \frac{{W + 2P - K}}{{S}} \right\rfloor + 1 \right) (⌊SH+2P−K⌋+1)×(⌊SW+2P−K⌋+1) - 防止梯度弥散,设置auxiliary classifiers (辅助分类器),网络结构和顶层的输出一样,分别得到loss1,loss2,loss3。loss=loss1+loss2+0.3loss3(系数不是论文里的),这样在反向传播的时候不至于每个梯度都为0,从不同角度看物体。下图黄色部分,详见论文。
- 训练细节第二遍不看
- 分类结果:(小trick、刷表)
- 为了获得更高的精度,GoogleNet采取了一些小Trick,同时利用7个版本的GoogleNet,预测的时候用了集成学习的方法。
- 对于一张图片取4个不同的尺寸,每个尺寸分别取左中右部子图,对于子图分别取四个角和中心,再镜像一下。435*2=144。从144个角度都预测然后取平均结果。
相关文章:

GoogleNet论文精读
论文名:Going depper with convolutions论文下载地址:https://github.com/jixiuy/paper引言第一段:背景成绩1*1的卷积在channel上升维和降维,channel融合,计算方法上等价于FNNGAP(全局平均池化)…...
智能指针shared_ptr简介及小例子
shared_ptr是一种智能指针,用于处理动态分配的对象。它提供了一种引用计数的机制,当没有任何其他shared_ptr指向一个对象时,该对象将被自动删除。 shared_ptr的作用类似于常规指针,但有一些额外的功能。它能够记录有多少个shared…...
机器人精确移动包
move_near 之前有写过, 将ROS官方的move_basic包改写成了python形式, 同时将它写成了一个完整的action接口 最近测试时发现了问题, odom的数据波动可能会导致机器人陷入正反馈从而一直移动 具体表现为: 机器人移动精度设置为0.005 [m] 机器人在移动到接近0.005的位置, odom…...
强化学习环境报错解决
问题:nameerror: name ‘glpushmatrix‘ is not defined 解决:更换pyglet包的版本。pyglet2.0a4会报这个错误,把版本换成pyglet1.5.27即可。 问题:安装了gym和ale-py但是还是找不到模型,报错ModuleNotFoundError: No…...

Ganache本地测试网如何在远程环境中进行访问和操作
文章目录 前言1. 安装Ganache2. 安装cpolar3. 创建公网地址4. 公网访问连接5. 固定公网地址 前言 Ganache 是DApp的测试网络,提供图形化界面,log日志等;智能合约部署时需要连接测试网络。 Ganache 是一个运行在本地测试的网络,通过结合cpol…...
Kotlin中的函数分类(顶层、成员、局部、递归等)
在 Kotlin 中,函数可以按照不同的方式进行分类。在本篇博客中,我们将介绍以下几种常见的函数分类,并提供示例代码进行演示。 顶层函数: 顶层函数是指定义在文件中的函数,不依赖于任何类或对象。它们可以在文件的任何…...

字符串排序程序
字符串排序程序,对一个字符串中的数值进行从小到大的排序 例如排序前给定的字符串为" 20 78 9 -7 88 36 29" 排序后: -7 9 20 29 36 78 88 要求使用包装类对数值类型的字符串转换成整型进行排序。 public class StringSort {public static vo…...

功率放大器在材料测试中的应用有哪些
功率放大器在材料测试中有广泛的应用,尤其在材料的物理、电子和热学性质等方面的研究中起到了重要的作用。下面Aigtek安泰将详细介绍功率放大器在材料测试中的一些主要应用。 电学特性测试:功率放大器用于材料的电学特性测试,如电导率、介电常…...

汽车屏类产品(一):流媒体后视镜Camera Monitoring System (CMS)
前言: CMS,有叫电子侧视镜,虚拟倒车镜,电子倒车镜, 电子取代镜等,ISO 国际标准组织称其为摄像头监控系统。电子后视镜由“摄像头+屏幕”组成,汽车外后视镜经历了光学镜面从平面镜到曲面镜的迭代进步,CMS也实现从商用车到乘用车的过渡。显示模式为外部摄像头采集图像,…...
三元组(C++ 实现矩阵快速转置)
三元组稀疏矩阵是一种高效存储稀疏矩阵的方法。它通过记录矩阵中非零元素的行、列和值来表示一个稀疏矩阵。我们在三元组里存储的是每个元素的行、列以及值。 题目: 任意输入一个稀疏矩阵M,用三元组顺序表压缩存储该稀疏矩阵M,然后求其转置矩…...

Apriori(关联规则挖掘算法)
关联规则分析 事务库 上表所示的购物篮数据即是一个事务库,该事务库记录的是用户行为的数据。 事务 上表事务库中的每一条记录被称为一笔事务。在购物篮事务中,每一次购物行为即为一笔事务,例如第一行数据“用户1购买商品A,B,C”即为一条事…...

new Object()到底占用几个字节
Java内存模型 对象内存中可以分为三块区域:对象头(Header),实例数据(Instance Data)和对齐填充(Padding),以64位操作系统为例(未开启指针压缩的情况)Java对象布局 如下图所示: 其中对象头中的Mark Word中的详细信息在文章synchr…...

瞬态抑制二极管TVS的工作原理?|深圳比创达电子EMC(上)
TVS二极管具有响应速度快、漏电流小、钳位电压稳以及无寿命衰减的特性,从小到信号线静电防护,大到电力系统抗雷击浪涌,TVS都发挥着至关重要的作用。本章对瞬态抑制二极管TVS工作机理展开分析,供产品选型参考。接下来就跟着深圳比创…...
Nginx 同一端口 同时支持http与https 协议
文章目录 需求分析 需求 通过 nginx ,让同一端口 同时支持http与https 协议 分析 通过使用 Nginx,可以实现同一端口同时支持 HTTP 和 HTTPS 协议。下面是一种可能的配置方式: 配置 HTTP 服务 在 Nginx 配置文件中,添加以下配置…...
【Express】文件上传管理 multer 中间件
Multer是Node.js中用于处理文件上传的中间件。它可以帮助你处理文件上传的相关逻辑,如接收和保存上传的文件、限制文件大小、设置文件类型限制等。只能用于处理 multipart/form-data 类型的表单数据,它主要用于上传文件。 下面是使用Multer中间件的基本…...

性能监控软件是什么?有哪些优势?
在现代科技驱动的世界中,计算机系统的性能对于企业和个人用户都至关重要。性能监控软件是一种不可或缺的工具,可以帮助我们实时跟踪、分析和优化系统的性能。本文将介绍性能监控软件的概念、其重要性以及如何选择和使用这些工具来提高系统效率。 一、性能…...

分布式事务及CAP和BASE顶底
一、分布式事务 单体应用肯定就不存在分布式事务了,只有在分布式微服务系统中,各个服务之间通过RPC调用后,每个微服务有自己和数据库的连接,各个微服务的回滚不影响其他的微服务事务,这几必须使用分布式事务来解决分布…...

Django REST Framework完整教程-认证与权限-JWT的使用
文章目录 1.认证(Authentication)与权限(Permission)1.1.视图添加权限1.2.登录验证1.3.常用DRF自带权限类1.4.自定义权限类1.5.全局权限1.6.函数视图权限 2.认证详解2.1.认证方案2.2.如何使用TokenAuthentication? 3.JSON Web Token(JWT)认证3.1.工作原理3.2.安装3.…...

领域内容第18名
恭喜入榜...

[1024]程序员节 一晃6年过去了
加入开发者大军,一晃已是6年有余,从最初的Andoird开发如火如荼,到现在的秋风萧瑟,宛如被秋风吹得只剩躯干的树木,等待来年的焕发新芽。 我本不是一个科班出身的开发者,但是为了生活,说白了为了钱…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...