分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
目录
- 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测;
2.运行环境为Matlab2020b;
3.输入多个特征,分四类,多特征分类预测;
4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。
模型描述
基于GRU-AdaBoost门控循环单元的AdaBoost多输入分类预测是一种集成学习方法。它结合了GRU网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。
GRU网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用GRU网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。
程序设计
- 完整源码和数据获取方式:私信博主回复MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测;
%% 创建网络
layers = [ ...sequenceInputLayer(12) % 输入层gruLayer(6, 'OutputMode', 'last') % GRU层reluLayer % Relu激活层fullyConnectedLayer(4) % 全连接层softmaxLayer % 分类层classificationLayer];%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MiniBatchSize', 100, ... % 批大小'MaxEpochs', 1000, ... % 最大迭代次数'InitialLearnRate', 1e-2, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率下降'LearnRateDropFactor', 0.1, ... % 学习率下降因子'LearnRateDropPeriod', 700, ... % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ... % 每次训练打乱数据集'ValidationPatience', Inf, ... % 关闭验证'Plots', 'training-progress', ... % 画出曲线'Verbose', false);%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test ); %% 数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于GRU-AdaBoost门控循环单元结…...

【Spring Boot项目】根据用户的角色控制数据库访问权限
文章目录 简介方法一添加数据库依赖配置数据库连接创建用户角色表创建Spring Data JPA实体和仓库实现自定义的网关过滤器配置网关过滤器几个简单的测试API 方法二创建数据库访问接口实现数据库访问接口创建用户角色判断逻辑创建网关过滤器配置网关过滤器 总结 简介 在一些特定…...

EthernetIP 转MODBUS RTU协议网关连接FANUC机器人作为EthernetIP通信从站
远创智控YC-EIPM-RTU网关产品是一款高效的数据采集工具,它可以通过各种数据接口与工业领域的仪表、PLC、计量设备等产品连接,实时采集这些设备中的运行数据、状态数据等信息。采集到的数据经过整合和运算等操作后,可以被传输到其他设备或者云…...

如何注册微信小程序
如何注册微信小程序 前言 因为最近沉迷和朋友们一起下班去打麻将,他们推荐了一个计分的小程序,就不需要每局都转账或者用扑克牌记录了,但是这个小程序不仅打开有广告,各个页面都植入了广告,用起来十分不适。 于是我…...

移动App安全检测的必要性,app安全测试报告的编写注意事项
随着移动互联网的迅猛发展,移动App已经成为人们日常生活中不可或缺的一部分。然而,虽然App给我们带来了便利和乐趣,但也伴随着一些潜在的安全风险。黑客、病毒、恶意软件等威胁着用户的隐私和财产安全,因此进行安全检测就显得尤为…...

DVWA-JavaScript Attacks
JavaScript Attacks JavaScript Attack即JS攻击,攻击者可以利用JavaScript实施攻击。 Low 等级 核心源码,用的是dom语法这是在前端使用的和后端无关,然后获取属性为phrase的值然后来个rot13和MD5双重加密在复制给token属性。 <script&…...
算法通关村第二关|白银|链表反转拓展【持续更新】
1.指定区间反转 1.1 头插法:将区间内遍历到的结点插入到起始处之前。 public ListNode reverseBetween(ListNode head, int left, int right) {ListNode dummyNode new ListNode(-1);dummyNode.next head;ListNode pre dummyNode;// 将pre移动到区间的前一位&a…...

开发者职场“生存状态”大调研报告分析 - 第四版
听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…...

代码与细节(一)
在用到 Java17的新特性 Unmodifiable Lists 时不知道你是否和我有同样的惊讶 为什么弄了这么多重载方法? 先说结论:为了性能。 其实一细想,都能想明白:varargs(可变参数) 的背后是数组的内存分配和初始化,相比正常的…...

AI绘画使用Stable Diffusion(SDXL)绘制中国古代神兽
一、引言 说到神奇异兽,脑海中首先就会跳出我国古代神话传说中的各种神兽。比如青龙、白虎、朱雀、玄武,再比如麒麟、凤凰、毕方、饕餮等等,这些都是大家耳熟能详的的神兽。 这些神兽不仅体现了人们丰富的创造力和想象力,更是我…...
老卫带你学---leetcode刷题(148. 排序链表)
148. 排序链表 问题: 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1:输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2:输入:head [-1,5,3,4,0] 输出:[-1…...

21.1 stm32使用LTDC驱动LCD--配置说明
本文讲解如何配置LTDC驱动LCD的参数配置,以及CubeMx参数配置说明 本文使用的是淘宝买的一块带电容触摸的液晶显示屏:5寸TFT液晶显示屏高清800*480免驱40P通用RGBIPS全视角彩屏GT911 说实话,价格还是相对挺便宜的,值得入手…...

zabbix监控nginx的状态页面
zabbix监控nginx的状态页面 文章目录 zabbix监控nginx的状态页面1.环境说明2.所涉及到的知识点3.在nginx主机上安装zabbix_agent4.开启nginx状态显示页面5.进入zabbix的web页面配置主机,监控项,触发器5.1.添加主机5.2.创建监控项5.3.创建触发器 1.环境说…...

C语言初学者工具选择:vscode + MSYS2 + cmake 搭建 C环境
文章目录 前言1. MSYS2 安装1. 下载安装包2. 安装3. pacman 换清华大学源4. 安装 mingw-w64 toolchain 和 cmake ninja5. 将 toolchain 加入系统环境变量 2. 设置 vscode1. 必要的插件2. 一个简单的 vscode cmake 项目 最后C数据结构与算法CMake 前言 网上关于使用 vscode 配…...

【四:httpclient的使用】
目录 1、Demo案例2、请求一个带cookies的get请求3、请求一个带cookies的post请求案例一,案例二的properties的配置 1、Demo案例 public class MyHttpClient {Testpublic void test1() throws IOException {//用来存放我们的结果String result;HttpGet get new Htt…...
在innodb引擎中,count(*)、count(1)、count(主键)、count(字段)哪个性能最高?
在InnoDB引擎中,这四种计数值的效率高低取决于具体的数据库和数据表结构,无法一概而论哪个性能最高。不过,一般情况下可以按照以下顺序进行选择: count():统计所有行的数量。由于InnoDB引擎的行锁是锁住整行ÿ…...
华为OD 跳格子2(200分)【java】B卷
华为OD统一考试A卷B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载,请点击此链接进入:…...

javascript/python 笔记: folium feature group自动切换
1 python部分 python部分只能是静态的结果 1.1 导入库 import folium import math 1.2 数据 cell_lst表示基站位置,location_lst表示 用户实际位置(均为伪数据) cell_lst[[1.341505, 103.682498],[1.342751, 103.679604],[1.341505, 10…...
Python中的元组
Python 元组 Python 的元组与列表类似,不同之处在于元组的元素不能修改。以下是关于Python元组的一些基本信息: 元组的使用:元组是一个不可变的序列类型,使用小括号 () 来定义。元组没有增加元素append、修改元素、删除元素pop的…...

在云计算环境中,如何利用 AI 改进云计算系统和数据库系统性能
文章目录 前言一、关于唐明洁教授二、AI for System2.1 面向分布式作业的人工智能2.1.1 现阶段企业云计算系统环境所遇到的普遍痛点2.1.2 云计算系统环境所遇到的普遍痛点的解决方案(一)Google Autopilot Eurosys 2021方案(Pod级别࿰…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

使用homeassistant 插件将tasmota 接入到米家
我写一个一个 将本地tasmoat的的设备同通过ha集成到小爱同学的功能,利用了巴法接入小爱的功能,将本地mqtt转发给巴法以实现小爱控制的功能,前提条件。1需要tasmota 设备, 2.在本地搭建了mqtt服务可, 3.搭建了ha 4.在h…...