当前位置: 首页 > news >正文

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测;
2.运行环境为Matlab2020b;
3.输入多个特征,分四类,多特征分类预测;
4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。

模型描述

基于GRU-AdaBoost门控循环单元的AdaBoost多输入分类预测是一种集成学习方法。它结合了GRU网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。
GRU网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用GRU网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
%%  创建网络
layers = [ ...sequenceInputLayer(12)               % 输入层gruLayer(6, 'OutputMode', 'last')   % GRU层reluLayer                            % Relu激活层fullyConnectedLayer(4)               % 全连接层softmaxLayer                         % 分类层classificationLayer];%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法'MiniBatchSize', 100, ...               % 批大小'MaxEpochs', 1000, ...                  % 最大迭代次数'InitialLearnRate', 1e-2, ...           % 初始学习率'LearnRateSchedule', 'piecewise', ...   % 学习率下降'LearnRateDropFactor', 0.1, ...         % 学习率下降因子'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集'ValidationPatience', Inf, ...          % 关闭验证'Plots', 'training-progress', ...       % 画出曲线'Verbose', false);%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);%%  仿真预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于GRU-AdaBoost门控循环单元结…...

【Spring Boot项目】根据用户的角色控制数据库访问权限

文章目录 简介方法一添加数据库依赖配置数据库连接创建用户角色表创建Spring Data JPA实体和仓库实现自定义的网关过滤器配置网关过滤器几个简单的测试API 方法二创建数据库访问接口实现数据库访问接口创建用户角色判断逻辑创建网关过滤器配置网关过滤器 总结 简介 在一些特定…...

EthernetIP 转MODBUS RTU协议网关连接FANUC机器人作为EthernetIP通信从站

远创智控YC-EIPM-RTU网关产品是一款高效的数据采集工具,它可以通过各种数据接口与工业领域的仪表、PLC、计量设备等产品连接,实时采集这些设备中的运行数据、状态数据等信息。采集到的数据经过整合和运算等操作后,可以被传输到其他设备或者云…...

如何注册微信小程序

如何注册微信小程序 前言 因为最近沉迷和朋友们一起下班去打麻将,他们推荐了一个计分的小程序,就不需要每局都转账或者用扑克牌记录了,但是这个小程序不仅打开有广告,各个页面都植入了广告,用起来十分不适。 于是我…...

移动App安全检测的必要性,app安全测试报告的编写注意事项

随着移动互联网的迅猛发展,移动App已经成为人们日常生活中不可或缺的一部分。然而,虽然App给我们带来了便利和乐趣,但也伴随着一些潜在的安全风险。黑客、病毒、恶意软件等威胁着用户的隐私和财产安全,因此进行安全检测就显得尤为…...

DVWA-JavaScript Attacks

JavaScript Attacks JavaScript Attack即JS攻击&#xff0c;攻击者可以利用JavaScript实施攻击。 Low 等级 核心源码&#xff0c;用的是dom语法这是在前端使用的和后端无关&#xff0c;然后获取属性为phrase的值然后来个rot13和MD5双重加密在复制给token属性。 <script&…...

算法通关村第二关|白银|链表反转拓展【持续更新】

1.指定区间反转 1.1 头插法&#xff1a;将区间内遍历到的结点插入到起始处之前。 public ListNode reverseBetween(ListNode head, int left, int right) {ListNode dummyNode new ListNode(-1);dummyNode.next head;ListNode pre dummyNode;// 将pre移动到区间的前一位&a…...

开发者职场“生存状态”大调研报告分析 - 第四版

听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…...

代码与细节(一)

在用到 Java17的新特性 Unmodifiable Lists 时不知道你是否和我有同样的惊讶 为什么弄了这么多重载方法&#xff1f; 先说结论&#xff1a;为了性能。 其实一细想&#xff0c;都能想明白&#xff1a;varargs(可变参数) 的背后是数组的内存分配和初始化&#xff0c;相比正常的…...

AI绘画使用Stable Diffusion(SDXL)绘制中国古代神兽

一、引言 说到神奇异兽&#xff0c;脑海中首先就会跳出我国古代神话传说中的各种神兽。比如青龙、白虎、朱雀、玄武&#xff0c;再比如麒麟、凤凰、毕方、饕餮等等&#xff0c;这些都是大家耳熟能详的的神兽。 这些神兽不仅体现了人们丰富的创造力和想象力&#xff0c;更是我…...

老卫带你学---leetcode刷题(148. 排序链表)

148. 排序链表 问题&#xff1a; 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a;输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4]示例 2&#xff1a;输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1…...

21.1 stm32使用LTDC驱动LCD--配置说明

本文讲解如何配置LTDC驱动LCD的参数配置&#xff0c;以及CubeMx参数配置说明 本文使用的是淘宝买的一块带电容触摸的液晶显示屏&#xff1a;5寸TFT液晶显示屏高清800*480免驱40P通用RGBIPS全视角彩屏GT911 说实话&#xff0c;价格还是相对挺便宜的&#xff0c;值得入手&#xf…...

zabbix监控nginx的状态页面

zabbix监控nginx的状态页面 文章目录 zabbix监控nginx的状态页面1.环境说明2.所涉及到的知识点3.在nginx主机上安装zabbix_agent4.开启nginx状态显示页面5.进入zabbix的web页面配置主机&#xff0c;监控项&#xff0c;触发器5.1.添加主机5.2.创建监控项5.3.创建触发器 1.环境说…...

C语言初学者工具选择:vscode + MSYS2 + cmake 搭建 C环境

文章目录 前言1. MSYS2 安装1. 下载安装包2. 安装3. pacman 换清华大学源4. 安装 mingw-w64 toolchain 和 cmake ninja5. 将 toolchain 加入系统环境变量 2. 设置 vscode1. 必要的插件2. 一个简单的 vscode cmake 项目 最后C数据结构与算法CMake 前言 网上关于使用 vscode 配…...

【四:httpclient的使用】

目录 1、Demo案例2、请求一个带cookies的get请求3、请求一个带cookies的post请求案例一&#xff0c;案例二的properties的配置 1、Demo案例 public class MyHttpClient {Testpublic void test1() throws IOException {//用来存放我们的结果String result;HttpGet get new Htt…...

在innodb引擎中,count(*)、count(1)、count(主键)、count(字段)哪个性能最高?

在InnoDB引擎中&#xff0c;这四种计数值的效率高低取决于具体的数据库和数据表结构&#xff0c;无法一概而论哪个性能最高。不过&#xff0c;一般情况下可以按照以下顺序进行选择&#xff1a; count()&#xff1a;统计所有行的数量。由于InnoDB引擎的行锁是锁住整行&#xff…...

华为OD 跳格子2(200分)【java】B卷

华为OD统一考试A卷B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目&#xff0c;A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载&#xff0c;请点击此链接进入&#xff1a…...

javascript/python 笔记: folium feature group自动切换

1 python部分 python部分只能是静态的结果 1.1 导入库 import folium import math 1.2 数据 cell_lst表示基站位置&#xff0c;location_lst表示 用户实际位置&#xff08;均为伪数据&#xff09; cell_lst[[1.341505, 103.682498],[1.342751, 103.679604],[1.341505, 10…...

Python中的元组

Python 元组 Python 的元组与列表类似&#xff0c;不同之处在于元组的元素不能修改。以下是关于Python元组的一些基本信息&#xff1a; 元组的使用&#xff1a;元组是一个不可变的序列类型&#xff0c;使用小括号 () 来定义。元组没有增加元素append、修改元素、删除元素pop的…...

在云计算环境中,如何利用 AI 改进云计算系统和数据库系统性能

文章目录 前言一、关于唐明洁教授二、AI for System2.1 面向分布式作业的人工智能2.1.1 现阶段企业云计算系统环境所遇到的普遍痛点2.1.2 云计算系统环境所遇到的普遍痛点的解决方案&#xff08;一&#xff09;Google Autopilot Eurosys 2021方案&#xff08;Pod级别&#xff0…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...