当前位置: 首页 > news >正文

C++三角函数和反三角函数

当涉及到三角函数和反三角函数时,C++提供了一组函数来执行这些计算。以下是C++中常用的三角函数和反三角函数的详细解释和示例说明:

  1. sin函数(正弦函数):

    • 函数原型:double sin(double x);
    • 功能:计算给定角度x的正弦值。
    • 返回值:返回x的正弦值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double angle = 45.0;  // 角度值double radians = angle * M_PI / 180.0;  // 将角度转换为弧度double result = sin(radians);  // 计算正弦值std::cout << "sin(" << angle << ") = " << result << std::endl;return 0;
      }
      
      输出:
      sin(45) = 0.707107
      
  2. cos函数(余弦函数):

    • 函数原型:double cos(double x);
    • 功能:计算给定角度x的余弦值。
    • 返回值:返回x的余弦值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double angle = 60.0;  // 角度值double radians = angle * M_PI / 180.0;  // 将角度转换为弧度double result = cos(radians);  // 计算余弦值std::cout << "cos(" << angle << ") = " << result << std::endl;return 0;
      }
      
      输出:
      cos(60) = 0.5
      
  3. tan函数(正切函数):

    • 函数原型:double tan(double x);
    • 功能:计算给定角度x的正切值。
    • 返回值:返回x的正切值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double angle = 30.0;  // 角度值double radians = angle * M_PI / 180.0;  // 将角度转换为弧度double result = tan(radians);  // 计算正切值std::cout << "tan(" << angle << ") = " << result << std::endl;return 0;
      }
      
      输出:
      tan(30) = 0.57735
      
  4. asin函数(反正弦函数):

    • 函数原型:double asin(double x);
    • 功能:计算给定值x的反正弦值。
    • 返回值:返回x的反正弦值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double value = 0.5;  // 值double result = asin(value);  // 计算反正弦值std::cout << "asin(" << value << ") = " << result << std::endl;return 0;
      }
      
      输出:
      asin(0.5) = 0.523599
      
  5. acos函数(反余弦函数):

    • 函数原型:double acos(double x);
    • 功能:计算给定值x的反余弦值。
    • 返回值:返回x的反余弦值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double value = 0.5;  // 值double result = acos(value);  // 计算反余弦值std::cout << "acos(" << value << ") = " << result << std::endl;return 0;
      }
      
      输出:
      acos(0.5) = 16. `atan`函数(反正切函数):
      
    • 函数原型:double atan(double x);
    • 功能:计算给定值x的反正切值。
    • 返回值:返回x的反正切值,类型为double
    • 示例:
      #include <cmath>
      #include <iostream>int main() {double value = 1.0;  // 值double result = atan(value);  // 计算反正切值std::cout << "atan(" << value << ") = " << result << std::endl;return 0;
      }
      
      输出:
      atan(1) = 0.785398
      

这些函数都位于 <cmath> 头文件中,因此需要包含该头文件以在程序中使用它们。这些函数接受弧度或角度作为参数,具体取决于函数的实现。在使用之前,可能需要将角度转换为弧度,例如通过乘以 M_PI/180.0 来将角度转换为弧度。

三角函数的返回值类型为 double,并且它们在处理特殊情况(例如超出定义域的值)时可能返回特殊值,如 NaN(非数字)或正负无穷大。在实际使用中,确保输入的值在定义域范围内,并注意处理可能的异常情况。

相关文章:

C++三角函数和反三角函数

当涉及到三角函数和反三角函数时&#xff0c;C提供了一组函数来执行这些计算。以下是C中常用的三角函数和反三角函数的详细解释和示例说明&#xff1a; sin函数&#xff08;正弦函数&#xff09;&#xff1a; 函数原型&#xff1a;double sin(double x);功能&#xff1a;计算给…...

Linux篇 五、Ubuntu与Linux板卡建立NFS服务

Linux系列文章目录 一、香橙派Zero2设置开机连接wifi 二、香橙派Zero2获取Linux SDK源码 三、香橙派Zero2搭建Qt环境 四、Linux修改用户名 文章目录 Linux系列文章目录前言一、连接到局域网互ping测试 二、安装NFS服务配置NFS更新exports配置三、板卡安装NFS客户端四、板卡临时…...

通讯协议学习之路:IrDA协议协议理论

通讯协议之路主要分为两部分&#xff0c;第一部分从理论上面讲解各类协议的通讯原理以及通讯格式&#xff0c;第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN&#xff1b;视频会发布在bilibili(UID:399951374) 序、…...

互联网摸鱼日报(2023-10-20)

互联网摸鱼日报(2023-10-20) 博客园新闻 OPPO让折叠机超越直板旗舰成为可能 特斯拉的“大空头”&#xff0c;是马斯克那张嘴 逃避内卷的年轻人&#xff0c;盯上了老年大学的音乐课 理想市值超蔚来1倍&#xff0c;一场属于增程式的胜利 补足折叠屏影像短板&#xff0c;OPPO…...

C/C++ 快速入门

参考&#xff1a;https://blog.csdn.net/gao_zhennan/article/details/128769439 1 下载Visual Studio Code并安装中文插件&#xff0c;此处不再叙述 2 插件安装C/C插件 3 使用快捷键【Ctr ~】打打开终端 验证并未安装编译器 4 我们即将使用【MinGW-64】做为编译器 https:…...

【Git】升级MacOS系统,git命令无法使用

终端执行git命令报错 xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun安装这个东东&#xff0c;&#xff1f;需要42小时 最终解决&#xff1a; 下载安装 https…...

单点登录是什么?

单点登录&#xff08;Single Sign On, SSO&#xff09;是指在同一帐号平台下的多个应用系统中&#xff0c;用户只需登录一次&#xff0c;即可访问所有相互信任的应用系统。 单点登录的本质就是在多个应用系统中共享登录状态。如果用户的登录状态是记录在 Session 中的&#xff…...

面向对象设计原则之依赖倒置原则

目录 定义原始定义进一步的理解 作用实现方法代码示例 面向对象设计原则之开-闭原则 面向对象设计原则之里式替换原则 面向对象设计原则之依赖倒置原则 面向对象设计原则之单一职责原则 定义 依赖倒置原则&#xff08;Dependence Inversion Principle&#xff09;&#xff0c…...

MATLAB——概率神经网络分类问题程序

欢迎关注“电击小子程高兴的MATLAB小屋” %% 概率神经网络 %% 解决分类问题 clear all; close all; P[1:8]; Tc[2 3 1 2 3 2 1 1]; Tind2vec(Tc) %数据类型的转换 netnewpnn(P,T); Ysim(net,P); Ycvec2ind(Y) %转换回来...

微信小程序的OA会议之首页搭建

目录 一.小程序的布局 1.1. flex是什么 1.2. flex布局 1.3.总体布局 二.轮播图 2.1. 组件 2.2. 数据请求 2.3. 页面 三.首页 2.1. 视图 2.2.数据 2.3. 样式 好啦今天就到这里了&#xff0c;希望能帮到你哦&#xff01;&#xff01;&#xff01; 一.小程序的布局 …...

JS初步了解环境对象this

什么是环境对象&#xff1f; 环境对象&#xff1a;指的是函数内部特殊的变量this&#xff0c;它代表着当前函数运行时所处的环境 作用&#xff1a;弄清楚this的指向&#xff0c;可以让我们代码更简洁 在普通函数中&#xff1a; // 每个函数里面都有this 普通函数的this指向wind…...

Unbuntu-18-network-issue

第六步&#xff1a;容器管理 查看zfs储存卷的占用情况zpool list 为容器修改参数配置 我们不想每个人使用全部的硬件资源&#xff0c;所以还需要限制每个人的参数容器参数配置说明配置容器参数lxc config edit YourContainerName 配置默认容器参数&#xff08;新容器的参数会…...

Vue、React和小程序中的组件通信:父传子和子传父的应用

序言&#xff1a; 组件化开发是将一个大型应用程序拆分成独立的、可重用的、可组合的模块&#xff0c;使得开发人员可以快速构建和开发应用程序。组件化开发提倡将应用程序的各个功能模块分离开发&#xff0c;每个模块完成自己的功能并且可以在不同的应用程序中被复用。这可以…...

leetcode_171Excel表列序号

1. 题意 把excel中列序号字符串转换为10进制数。 Excel表列序号 2. 题解 26进制转10进制 class Solution { public:int titleToNumber(string columnTitle) {int sz columnTitle.size();int ans 0;int base 1;for ( int i sz - 1; ~i; --i){int v columnTitle[i] - A …...

北斗GPS卫星时钟同步服务器在银行数据机房应用

北斗GPS卫星时钟同步服务器在银行数据机房应用 北斗GPS卫星时钟同步服务器在银行数据机房应用 有些银行、政务、公安等重要业务单位&#xff0c;机房是采用屏蔽保密机房&#xff0c;这种情况下的时钟同步装置方案和普通机房的时钟同步方案又是不一样的。下面我们重点介绍保密机…...

Mysql数据库 1. SQL基础语法和操作

一、Mysql逻辑结构 一个数据库软件可以包含许多数据库 一个数据库包含许多表 一个表中包含许多字段&#xff08;列&#xff09; 数据库软件——>数据库——>数据表——>字段&#xff08;列&#xff09;、元组&#xff08;行&#xff09; 二、SQL语言基础语法 1.SQL…...

ChatGPT-GPT4:将AI技术融入科研、绘图与论文写作的实践

2023年我们进入了AI2.0时代。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车&#xff0c;就有可能被淘汰在这个数字化时代&#xff0c;如何能高效地处理文本、文献查阅、PPT…...

SLAM从入门到精通(构建自己的slam包)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 我们学习了很多的开源包&#xff0c;比如hector、gmapping。但其实我们也可以自己编写一个slam包。这么做最大的好处&#xff0c;主要还是可以帮助…...

全球二氧化碳排放数据1deg产品(ODIAC)数据

简介 全球二氧化碳排放数据1deg产品(ODIAC)是一个空间分辨率为1deg*1deg的全球化石燃料燃烧产生的二氧化碳空间分布产品。它率先将基于空间的夜间灯光数据与单个发电厂的排放/位置相结合来估计化石燃料二氧化碳的排放。该产品被国际研究界广泛用于各种研究应用&#xff08;例如…...

Element-UI 日期选择器--禁用未来日期

在做项目的时候经常会遇到一些报表需要填写日期&#xff0c;一般是填写当日及当日以前&#xff0c;这时候我们的日期选择器就需要进行一些限制&#xff0c;比如&#xff1a; 这样之后&#xff0c;就不会误填写到明天啦&#xff0c;下面让我们看一下代码实现 html页面代码 这里…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...