MXNet中使用双向循环神经网络BiRNN对文本进行情感分类<改进版>
在上一节的情感分类当中,有些评论是负面的,但预测的结果是正面的,比如,"this movie was shit"这部电影是狗屎,很明显就是对这部电影极不友好的评价,属于负类评价,给出的却是positive。
所以这节我们通过专门的“分词”和“扩大词向量维度”这两个途径来改进,提高预测的准确率。
spaCy分词
我们用spaCy分词工具来进行分词看是否能提高准确性。
推荐带上镜像站点来下载并安装。
pip install spacy -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.comimport spacy
>>> spacy.__version__
'3.0.9'安装英文包
python -m spacy download en这种方法我没有安装成功,于是我选择直接下载安装,感觉太慢选择迅雷下载:https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0-py3-none-any.whl
或者:
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0-py3-none-any.whl这里选择的是en_core_web_sm语言包,所以也可以直接选择豆瓣镜像下载《推荐这种方法》
pip install en_core_web_sm-3.0.0-py3-none-any.whl -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com安装好之后,就可以通过spacy来加载这个英文包
spacy_en = spacy.load("en_core_web_sm")
>>> spacy_en._path
WindowsPath('D:/Anaconda3/envs/pygpu/lib/site-packages/en_core_web_sm/en_core_web_sm-3.0.0')然后进行分词,将上一节或者说自带的get_tokenized_imdb函数修改下,使用修改的这个函数:
def get_tokenized_imdb(data):def tokenizer(text):return [tok.text for tok in spacy_en.tokenizer(text)]return [tokenizer(review) for review, _ in data]我们训练看下效果如何:
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "was", "shit"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "not", "good"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "so", "bad"]))
'''
training on [gpu(0)]
epoch 1, loss 0.5781, train acc 0.692, test acc 0.781, time 66.0 sec
epoch 2, loss 0.4024, train acc 0.822, test acc 0.839, time 65.4 sec
epoch 3, loss 0.3465, train acc 0.852, test acc 0.844, time 65.6 sec
epoch 4, loss 0.3227, train acc 0.861, test acc 0.856, time 65.9 sec
epoch 5, loss 0.2814, train acc 0.880, test acc 0.859, time 66.2 sec
negative
positive
negative
'''可以看到准确率有提高,而且第一条影评在上一节预测是positive,这里预测为negative,正确识别了这条影评的负类评价。第二条影评的预测错误了,说明没有识别出not good属于负类评价,接下来我们再叠加一个方法来提高准确率。
300维度的词向量
我们将预处理文件的词向量从100维度提高到300维度看下准确度有没有上升,也就是选择glove.6B.300d.txt来替换glove.6B.100d.txt
glove_embedding = text.embedding.create("glove", pretrained_file_name="glove.6B.300d.txt", vocabulary=vocab
)选择更高维度的词向量文档之后,我们做下训练测试看下:
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "was", "shit"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "not", "good"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "so", "bad"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "so", "good"]))
'''
training on [gpu(0)]
epoch 1, loss 0.5186, train acc 0.734, test acc 0.842, time 74.7 sec
epoch 2, loss 0.3411, train acc 0.854, test acc 0.862, time 74.8 sec
epoch 3, loss 0.2851, train acc 0.884, test acc 0.863, time 75.6 sec
epoch 4, loss 0.2459, train acc 0.903, test acc 0.843, time 75.3 sec
epoch 5, loss 0.2099, train acc 0.917, test acc 0.853, time 75.8 sec
negative
negative
negative
positive
'''准确度再次有了提升,四条影评都被正确识别了情绪。
全部代码
import collections
import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.contrib import text
from mxnet.gluon import data as gdata, loss as gloss, nn, rnn
import spacy#spacy_en = spacy.load("en")
spacy_en = spacy.load("en_core_web_sm")def get_tokenized_imdb(data):def tokenizer(text):return [tok.text for tok in spacy_en.tokenizer(text)]return [tokenizer(review) for review, _ in data]def get_vocab_imdb(data):"""Get the vocab for the IMDB data set for sentiment analysis."""tokenized_data = get_tokenized_imdb(data)counter = collections.Counter([tk for st in tokenized_data for tk in st])return text.vocab.Vocabulary(counter, min_freq=5, reserved_tokens=["<pad>"])# d2l.download_imdb(data_dir='data')
train_data, test_data = d2l.read_imdb("train"), d2l.read_imdb("test")
tokenized_data = get_tokenized_imdb(train_data)
vocab = get_vocab_imdb(train_data)
features, labels = d2l.preprocess_imdb(train_data, vocab)
batch_size = 64
# train_set = gdata.ArrayDataset(*d2l.preprocess_imdb(train_data, vocab))
train_set = gdata.ArrayDataset(*[features, labels])
test_set = gdata.ArrayDataset(*d2l.preprocess_imdb(test_data, vocab))
train_iter = gdata.DataLoader(train_set, batch_size, shuffle=True)
test_ieter = gdata.DataLoader(test_set, batch_size)"""
for X,y in train_iter:print(X.shape,y.shape)break
"""class BiRNN(nn.Block):def __init__(self, vocab, embed_size, num_hiddens, num_layers, **kwargs):super(BiRNN, self).__init__(**kwargs)# 词嵌入层self.embedding = nn.Embedding(input_dim=len(vocab), output_dim=embed_size)# bidirectional设为True就是双向循环神经网络self.encoder = rnn.LSTM(hidden_size=num_hiddens,num_layers=num_layers,bidirectional=True,input_size=embed_size,)self.decoder = nn.Dense(2)def forward(self, inputs):# LSTM需要序列长度(词数)作为第一维,所以inputs[形状为:(批量大小,词数)]需做转置# 输出就是(词数,批量大小,词向量维度)(500, 64, 100)->全连接层之后的形状(5,1,100)embeddings = self.embedding(inputs.T)# 双向循环所以乘以2(词数,批量大小,词向量维度*2)(500, 64, 200)->全连接层之后的形状(5,1,200)outputs = self.encoder(embeddings)# 将初始时间步和最终时间步的隐藏状态作为全连接层输入# (64, 400)->全连接层之后的形状(1,400)encoding = nd.concat(outputs[0], outputs[-1])outs = self.decoder(encoding)return outs# 创建一个含2个隐藏层的双向循环神经网络
embed_size, num_hiddens, num_layers, ctx = 300, 100, 2, d2l.try_all_gpus()
net = BiRNN(vocab=vocab, embed_size=embed_size, num_hiddens=num_hiddens, num_layers=num_layers
)
net.initialize(init.Xavier(), ctx=ctx)glove_embedding = text.embedding.create("glove", pretrained_file_name="glove.6B.300d.txt", vocabulary=vocab
)
net.embedding.weight.set_data(glove_embedding.idx_to_vec)
net.embedding.collect_params().setattr("grad_req", "null")lr, num_epochs = 0.01, 5
trainer = gluon.Trainer(net.collect_params(), "adam", {"learning_rate": lr})
loss = gloss.SoftmaxCrossEntropyLoss()
d2l.train(train_iter, test_ieter, net, loss, trainer, ctx, num_epochs)print(d2l.predict_sentiment(net, vocab, ["this", "movie", "was", "shit"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "not", "good"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "so", "bad"]))
print(d2l.predict_sentiment(net, vocab, ["this", "movie", "is", "so", "good"]))其中需要注意的是embed_size的大小需设定为300,跟新选择的文件的词向量维度保持一致。
小结:从目前实验结果来看对词语的分词做的更好,对于理解词义是很有帮助的,另外将词映射成的向量维度越高,准确度也在提升。
相关文章:
MXNet中使用双向循环神经网络BiRNN对文本进行情感分类<改进版>
在上一节的情感分类当中,有些评论是负面的,但预测的结果是正面的,比如,"this movie was shit"这部电影是狗屎,很明显就是对这部电影极不友好的评价,属于负类评价,给出的却是positive。…...
DNS 域名解析
介绍域名 网域名称(英语:Domain Name,简称:Domain),简称域名、网域。 域名是互联网上某一台计算机或计算机组的名称。 域名可以说是一个 IP 地址的代称,目的是为了便于记忆。例如,…...
Spring MVC 源码- ViewResolver 组件
ViewResolver 组件ViewResolver 组件,视图解析器,根据视图名和国际化,获得最终的视图 View 对象回顾先来回顾一下在 DispatcherServlet 中处理请求的过程中哪里使用到 ViewResolver 组件,可以回到《一个请求响应的旅行过程》中的 …...
【Hello Linux】初识冯诺伊曼体系
作者:小萌新 专栏:Linux 作者简介:大二学生 希望能和大家一起进步! 本篇博客简介:简单介绍冯诺伊曼体系 冯诺伊曼体系 冯诺伊曼体系结构的合理性 我们在Linux的第一篇博客中讲解了第一台计算机的发明是为了解决导弹的…...
mysql索引,主从多个核心主题去探索问题。
网上收集不错的优化方案 事务 mvcc 详讲 详讲 索引 索引概念 MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据 库系统还维护者满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数 据…...
前端一面必会面试题(边面边更)
哪些情况会导致内存泄漏 以下四种情况会造成内存的泄漏: 意外的全局变量: 由于使用未声明的变量,而意外的创建了一个全局变量,而使这个变量一直留在内存中无法被回收。被遗忘的计时器或回调函数: 设置了 setInterval…...
【Hello Linux】初识操作系统
作者:小萌新 专栏:Linux 作者简介:大二学生 希望能和大家一起进步! 本篇博客简介:简单介绍下操作系统的概念 操作系统 操作系统是什么? 操作系统是管理软硬件资源的软件 为什么要设计操作系统 为什么要设…...
完美的vue3动态渲染菜单路由全程
前言: 首先,我们需要知道,动态路由菜单并非一开始就写好的,而是用户登录之后获取的路由菜单再进行渲染,从而可以起到资源节约何最大程度的保护系统的安全性。 需要配合后端,如果后端的值不匹配࿰…...
2023年CDGA考试模拟题库(301-400)
2023年CDGA考试模拟题库(301-400) 300.无附加价值的信息通常也不会被删除,因为:[1分] A.它不应该被移除,所有数据都是有价值的 B.我们可能在以后的某个阶段需更这些信息 C.规程中不明确是否应该保留 D.数据是一种资产它很可能在未来被认为是有价值的 E.规程中不明确哪些是…...
Linux-常见命令
🚜关注博主:翻斗花园代码手牛爷爷 🚙Gitee仓库:牛爷爷爱写代码 目录🚒xshell热键🚗Linux基本命令🚗ls指令🚕pwd指令🚖cd指令🚌touch指令🚍mkdir指…...
2.25测试对象分类
一.按照测试对象划分1.界面测试又称UI测试,按照界面的需求(一般是ui设计稿)和界面的设计规则,对我们软件界面所展示的全部内容进行测试和检查.对于非软件来说:颜色,大小,材质,整体是否美观对于软件来说:输入框,按钮,文字,图片...的尺寸,颜色,形状,整体适配,清晰度等等,2.可靠性…...
【Zabbix实战之部署篇】Zabbix客户端的安装部署方法
【Zabbix实战之部署篇】Zabbix客户端的安装部署方法 一、Zabbix-agent2介绍1.Zabbix-agent2简介2.Zabbix-agent2优点3.主动模式和被动模式二、环境规划1.Zabbix服务器部署链接2.IP规划三、配置客户端系统环境1.关闭selinux2.放行端口或关闭防火墙四、安装zabbix-agent21.下载za…...
【CSS】CSS 层叠样式表 ② ( CSS 引入方式 - 内嵌样式 )
文章目录一、CSS 引入方式 - 内嵌样式1、内嵌样式语法2、内嵌样式示例3、内嵌样式完整代码示例4、内嵌样式运行效果一、CSS 引入方式 - 内嵌样式 1、内嵌样式语法 CSS 内嵌样式 , 一般将 CSS 样式写在 HTML 的 head 标签中 ; CSS 内嵌样式 语法如下 : <head><style …...
MySQL事务与索引
MySQL事务与索引 一、事务 1、事务简介 在 MySQL 中只有使用了 Innodb 数据库引擎的数据库或表才支持事务。事务处理可以用来维护数据库的完整性,保证成批的 SQL 语句要么全部执行,要么全部不执行。事务用来管理 insert,update,delete 语句 事务特性…...
【编程入门】应用市场(php版)
背景 前面已输出多个系列: 《十余种编程语言做个计算器》 《十余种编程语言写2048小游戏》 《17种编程语言10种排序算法》 《十余种编程语言写博客系统》 《十余种编程语言写云笔记》 《N种编程语言做个记事本》 目标 为编程初学者打造入门学习项目,使…...
文化:你所在的团队,有多少人敢讲真话?
你好,我是叶芊。 今天我们要讨论的话题是文化,说“文化”这个词你可能会觉得很虚,那我们换个词——“做事风格”,这就和你们团队平时的协作习惯密切相关了。 做事风格,往小了讲,会影响团队成员对开会的认知…...
Linux | 项目自动化构建工具 - make/Makefile
make / Makefile一、前言二、make/Makefile背景介绍1、Makefile是干什么的?2、make又是什么?三、demo实现【见见猪跑🐖】三、依赖关系与依赖方法1、概念理清2、感性理解【父与子】3、深层理解【程序的翻译环境 栈的原理】四、多学一招&#…...
Spring源码该如何阅读?十年架构师带来的Spring源码解析千万不要错过!
写在前面最近学习了一句话,感觉自己的世界瞬间明朗,不再那么紧张焦虑恐慌,同样推荐给大家,希望我们都终有所得。“如果一个人不是发自内心地想要做一件事情,那么,他是无法改变自己的人生的。” 同样这句话用…...
sonarqube 外部扫描器 go vet golangci-lint 无法导入问题
首先,请看[外部分析报告]各种语言的报告生成 go vet 2> govet-report.out#没有golangci-lint,我从网上找到了 golangci-lint run --out-format checkstyle ./... > golangci-lint-report.xml值得注意的是,貌似不支持目录,仅…...
Tesseract-OCR 控制台怎么使用
Tesseract-OCR 控制台是一个命令行工具,可以在 Windows、Linux、macOS 等操作系统中使用。下面是使用 Tesseract-OCR 控制台进行文字识别的基本步骤:安装 Tesseract-OCR:可以到 Tesseract-OCR 的官方网站(https://github.com/tess…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
