ccc-pytorch-感知机算法(3)
文章目录
- 单一输出感知机
- 多输出感知机
- MLP反向传播
单一输出感知机

内容解释:
- w001w^1_{00}w001:输入标号1连接标号0(第一层)
- x00x_0^0x00:第0层的标号为0的值
- O11O_1^1O11:第一层的标号为0的输出值
- t:真实值
- σ\sigmaσ:激活函数
公式推导:
E=12(O01−t)\begin{aligned} E=\frac{1}{2}(O_0^1-t)^\ \end{aligned}E=21(O01−t)
添加常数便于求导,不影响单调性
∂E∂wj0=(O0−t)∂O0∂wj0=(O0−t)∂σ(x0)∂wj0=(O0−t)O0(1−O0)∂x01∂wj0注:[σ(x0)=O0]=(O0−t)O0(1−O0)xj0\begin{aligned} \frac{\partial E}{\partial w_{j0}} &=(O_0-t)\frac{\partial O_0}{\partial w_{j0}}\\ &=(O_0-t)\frac{\partial \sigma(x_0)}{\partial w_{j0}}\\ &=(O_0-t) O_0(1- O_0)\frac{\partial x_0^1}{\partial w_{j0}} 注:[\sigma(x_0)=O_0]\\ &=(O_0-t) O_0(1- O_0)x_j^0 \end{aligned}∂wj0∂E=(O0−t)∂wj0∂O0=(O0−t)∂wj0∂σ(x0)=(O0−t)O0(1−O0)∂wj0∂x01注:[σ(x0)=O0]=(O0−t)O0(1−O0)xj0
简单实践代码:
x = torch.randn(1,10)
w = torch.randn(1,10,requires_grad=True)
o = torch.sigmoid(x@w.t())
loss = F.mse_loss(torch.ones(1,1),o)
loss.shape
loss.backward()
w.grad

多输出感知机

内容解释:
和单层的一摸一样,只是多了几个输出,注意下标即可
公式推导:
E=12∑(Oik−tk)\begin{aligned} E=\frac{1}{2}\sum(O_i^k-t_k)^\ \end{aligned}E=21∑(Oik−tk)
添加常数便于求导,不影响单调性
∂E∂wjk=(Ok−tk)∂Ok∂wjk注:[下标对上才有值]=(Ok−tk)∂σ(xk)∂wjk=(Ok−tk)Ok(1−Ok)∂xk1∂wjk=(Ok−tk)Ok(1−Ok)xj1\begin{aligned} \frac{\partial E}{\partial w_{jk}} &=(O_k-t_k)\frac{\partial O_k}{\partial w_{jk}}注:[下标对上才有值]\\ &=(O_k-t_k)\frac{\partial \sigma(x_k)}{\partial w_{jk}}\\ &=(O_k-t_k) O_k(1- O_k)\frac{\partial x_k^1}{\partial w_{jk}} \\ &=(O_k-t_k) O_k(1- O_k)x_j^1 \end{aligned}∂wjk∂E=(Ok−tk)∂wjk∂Ok注:[下标对上才有值]=(Ok−tk)∂wjk∂σ(xk)=(Ok−tk)Ok(1−Ok)∂wjk∂xk1=(Ok−tk)Ok(1−Ok)xj1
即只需要输出和对应输入即可计算
简单实践代码:
x = torch.randn(1,10)
w = torch.randn(2,10,requires_grad=True)
o = torch.sigmoid(x@w.t())
loss = F.mse_loss(torch.ones(1,2),o)
loss.shape
loss.backward()
w.grad

MLP反向传播

内容解释:
MLP即Multi-Layer Perceptron,多层感知机
公式推导:
∂E∂Wij=∂∂Wij12∑k∈K(Ok−tk)2=∑k∈K(Ok−tk)∂∂WijOk=∑k∈K(Ok−tk)∂∂Wijσ(xk)=∑k∈K(Ok−tk)Ok(1−Ok)∂xk∂wij=∑k∈K(Ok−tk)Ok(1−Ok)∂xk∂Oj⋅∂Oj∂wij=∑k∈K(Ok−tk)Ok(1−Ok)Wjk∂Oj∂wij=Oj(1−Oj)∂xj∂Wij∑k∈K(Ok−tk)Ok(1−Ok)Wjk=Oj(1−Oj)Oi∑k∈K(Ok−tk)Ok(1−Ok)Wjk注:[层数从左到右为i,j,k]\begin{aligned} \frac{\partial E}{\partial W_{ij}} &=\frac{\partial }{\partial W_{ij}}\frac{1}{2}\sum_{k\in K}(O_k-t_k)^2\\ &=\sum_{k\in K}(O_k-t_k)\frac{\partial }{\partial W_{ij}}O_k\\ &=\sum_{k\in K}(O_k-t_k)\frac{\partial }{\partial W_{ij}}\sigma(x_k)\\ &=\sum_{k\in K}(O_k-t_k) O_k(1- O_k)\frac{\partial x_k}{\partial w_{ij}} \\ &=\sum_{k\in K}(O_k-t_k) O_k(1- O_k)\frac{\partial x_k}{\partial O_j}\cdot\frac{\partial O_j}{\partial w_{ij}}\\ &=\sum_{k\in K}(O_k-t_k) O_k(1- O_k)W_{jk}\frac{\partial O_j}{\partial w_{ij}}\\ &=O_j(1-O_j)\frac{\partial x_j}{\partial W_{ij}}\sum_{k\in K}(O_k-t_k) O_k(1- O_k)W_{jk}\\ &=O_j(1-O_j)O_i\sum_{k\in K}(O_k-t_k) O_k(1- O_k)W_{jk}\\ &注:[层数从左到右为 i ,j,k] \end{aligned}∂Wij∂E=∂Wij∂21k∈K∑(Ok−tk)2=k∈K∑(Ok−tk)∂Wij∂Ok=k∈K∑(Ok−tk)∂Wij∂σ(xk)=k∈K∑(Ok−tk)Ok(1−Ok)∂wij∂xk=k∈K∑(Ok−tk)Ok(1−Ok)∂Oj∂xk⋅∂wij∂Oj=k∈K∑(Ok−tk)Ok(1−Ok)Wjk∂wij∂Oj=Oj(1−Oj)∂Wij∂xjk∈K∑(Ok−tk)Ok(1−Ok)Wjk=Oj(1−Oj)Oik∈K∑(Ok−tk)Ok(1−Ok)Wjk注:[层数从左到右为i,j,k]
如果将仅与第k层相关的信息作为一个函数可以写作:
∂E∂Wij=OiOj(1−Oj)∑k∈KδkWjk\begin{aligned} \frac{\partial E}{\partial W_{ij}}=O_iO_j(1-O_j)\sum_{k\in K}\delta _kW_{jk} \end{aligned}∂Wij∂E=OiOj(1−Oj)k∈K∑δkWjk
所以一个前面层的值依赖后面层的信息,需要倒着计算才行哦
相关文章:
ccc-pytorch-感知机算法(3)
文章目录单一输出感知机多输出感知机MLP反向传播单一输出感知机 内容解释: w001w^1_{00}w001:输入标号1连接标号0(第一层)x00x_0^0x00:第0层的标号为0的值O11O_1^1O11:第一层的标号为0的输出值t:真实…...
LeetCode 225.用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。实现 MyStack 类:void push(int x) 将元素 x 压入栈顶。int pop() 移除并返回栈顶元素。int top() …...
【面试】spring控制反转IOC
目录一.说明二.ioc的概念和作用三.优点四.实现机制五.IOC和DI的区别六.设计原则一.说明 1.ioc的概念2.ioc的作用3.ioc的优点4.ioc的实现机制 二.ioc的概念和作用 1.全称Inversion of Control2.控制:创建对象的控制权3.反转:以前对象是程序员主动去new…...
Spring 事务管理详解及使用
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
LeetCode 232.用栈实现队列
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):实现 MyQueue 类:void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int peek() 返回队列开头的元…...
go面向对象思想封装继承多态
go貌似都没有听说过继承,当然这个继承不像c中通过class类的方式去继承,还是通过struct的方式,所以go严格来说不是面向对象编程的语言,c和java才是,不过还是可以基于自身的一些的特性实现面向对象的功能,面向…...
【网络原理9】HTTP响应篇
在前两篇文章当中,已经分别介绍了HTTP是什么,以及常见的请求头当中的属性。【网络原理7】认识HTTP_革凡成圣211的博客-CSDN博客HTTP抓包,Fiddler的使用https://blog.csdn.net/weixin_56738054/article/details/129148515?spm1001.2014.3001.…...
SpringCloud之Seata(二)
4.Seata如何应用于项目? 安装seata及修改配置 4.1 官网下载Seata安装包 4.2 修改seata/config.txt 4.2.1 修改存储方式 store.db.dbTypemysql store.db.driverClassNamecom.mysql.jdbc.Driver store.db.urljdbc:mysql://你的IP:3306/seata?useUnicodetrue sto…...
【Redis-入门阶段】基本数据结构
Redis支持多种数据结构,包括字符串、列表、哈希、集合和有序集合。这些数据结构在Redis中被称为键值对,其中键是一个字符串,值可以是一个字符串、列表、哈希、集合或有序集合。接下来,我们将详细介绍这些数据结构的使用方法。字符…...
BACnet协议详解————MS/TP物理层,数据链路层和网络层
文章目录写在前面1 物理层2 数据链路层MSTP的流程如下noteMS/TP帧格式3 网络层写在前面 这周加更一篇,来弥补一下之前落下的进度。简单的说两句,之前讲应用层的时候,只是跟官方的手册来同步一下,但是从个人理解来说,自…...
Tomcat
Tomcat 1 简介 1.1 什么是Web服务器 Web服务器是一个应用程序(软件),对HTTP协议的操作进行封装,使得程序员不必直接对协议进行操作,让Web开发更加便捷。主要功能是"提供网上信息浏览服务"。 Web服务器是安…...
创客匠人直播:构建公域到私域的用户增长模型
进入知识付费直播带货时代,很多拥有知识技能经验的老师和培训机构吃到了流量红利。通过知识付费直播,老师们可以轻松实现引流、变现,还可以突破时间、地域的限制,为全国各地的学员带来优质的教学服务,因此越来越受到教…...
机试指南
文章目录零、绪论和IDE安装int取值范围常犯的编程小错误一、枚举和模拟 (暴力求解)(一) 枚举1.Reverse函数 求 反序数2.程序出错的原因1.编译错误 (compile):基本语法错误2.链接错误 (link):函数名写错了3.运行错误 (run):结果与预期不符&…...
Android CTA认证设定首选网络类型
需求 硬件只支持4G,过CTA认证时打网络电话,会出现3G网络的选择,会导致过不了,需要禁用3G网络选择功能。 Android 8.1.0 分析 可adb命令查看当前的网络类型 getprop | grep “network” 打印如下: [gsm.network.type]: [LTE,LTE] [ro.telephony.default_network]: [9] …...
Android 动态切换应用图标方案
经常听到大家讨论类似的需求,怀疑大厂是不是用了此方案,据我个人了解,多数头部 app 其实都是发版来更新节假日的 icon。当然本方案也是一种可选的方案,以前我也调研过,存在问题和作者所述差不多,此外原文链…...
SMART PLC斜坡函数功能块(梯形图代码)
斜坡函数Ramp的具体应用可以参看下面的文章链接: PID优化系列之给定值斜坡函数(PLC代码+Simulink仿真测试)_RXXW_Dor的博客-CSDN博客很多变频器里的工艺PID,都有"PID给定值变化时间"这个参数,这里的给定值变化时间我们可以利用斜坡函数实现,当然也可以利用PT1…...
不那么认真的linux复习
这是个不那么认真的linux总结,可能有一些错误 1、linuxkernel(内核)shell(外壳)fs(文件系统)pro/uti/tol(应用程序) 2、ls(列出文件) -a…...
Redis系列文章总纲
跟着老万学Redis 前言 从事开发工作这么久,很多核心技术其实都还只是局限在满足日常开发工作中的基础使用,并没有完整的总结研究。今年的目标之一是完成几个技术栈的系列博客,系统的总结一下知识体系,目前计划是从Redis开始。 Re…...
更新丨三大模块升级,助力高效交付商业项目!
功能更新!本文将介绍最新升级的步进漫游、行业方案、VR漫游三个模块,让您更快更好的了解系统能力,为您带来更加便捷、高效的使用体验。步进漫游 离线导出步进式漫游系统,是基于全景图自动生成三维建模的解决方案,实现大…...
C++回顾(二)——const和引用
2.1 C中的const 2.1.1 C与C中const的比较 (1)C语言中的const C语言中 const修饰的变量是一个 常变量,本质还是变量,有自己的地址空间。 (2)C中的const 1、C中 const 变量声明的是一个真正的常量ÿ…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
