基于YOLOv8模型和WiderPerson数据集的行人目标检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型和WiderPerson数据集的行人目标检测系统可用于日常生活中检测与定位行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。

需要源码的朋友在后台私信博主获取下载链接
基本介绍
近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于WiderPerson数据集的行人目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。
环境搭建
(1)打开项目目录,在搜索框内输入cmd打开终端

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple
界面及功能展示
下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:

模型选择与初始化
用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。

置信分与IOU的改变
在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。
图像选择、检测与导出
用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
视频选择、检测与导出
用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
摄像头打开、检测与结束
用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
算法原理介绍
本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。

数据集介绍
本系统使用的船只目标数据集手动标注了行人这1个类别,数据集总计9000张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的人体摔倒行为检测识别数据集包含训练集7221张图片,验证集1779张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析
在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。

Pyside6界面设计
PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。
实验结果与分析
在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。
其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。
完整项目目录如下所示

相关文章:
基于YOLOv8模型和WiderPerson数据集的行人目标检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型和WiderPerson数据集的行人目标检测系统可用于日常生活中检测与定位行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标…...
COSCon'23 开源社文创丨 给开源人一点“color see see”
成都城市限定 “小O在成都”行李箱贴纸 成都限定行李箱贴纸把小O和特色元素相融合 当小O遇到成都 在云端漫步的蓝色小章鱼 掉落到这座热情似火的城市, 结识了大熊猫朋友 学会了四川麻将 吃到了红油串串... 快带着小O来一场自由的旅游吧! “你也要尝尝竹子…...
C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例
本文涉及的基础知识点 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 双指针 单调双向队列 题目 你有一辆货运卡车,你需要用这一辆车把一些箱子从仓库运送到码头。这辆卡车每次运输有 箱子数目的限制 和 总重量的限制 。 给你…...
【面试HOT100】链表树
系列综述: 💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于LeetCodeHot100进行的,每个知识点的修正和深入主要参考…...
了解 Elasticsearch 自动生成的文档 _id:重复是一个问题吗?
Elasticsearch 中自动生成的文档 ID 当你在未指定 ID 的情况下对文档建立索引时,Elasticsearch 会自动为该文档生成唯一的 ID。 该 ID 是 Base64 编码的 UUID,由多个部分组成,每个部分都有特定的用途。 ID 生成过程针对索引速度和存储效率进…...
量子信息处理器可能能够提供高度压缩的生成对抗学习任务的版本
量子信息处理在生成对抗学习任务中的应用可能性,以及量子信息处理器在表示高维向量和执行线性代数运算上的优势。 举个例子 假设底层数据由M个在N维实数或复数空间中的归一化向量~vj组成,使得数据的(归一化)协方差矩阵为C (1/M…...
linux-守护进程daemon
linux-守护进程daemon 代码实现 main.c运行结果 代码实现 main.c //pName:程序名 //facility: 守护进程,输出日志类型 302页 #include<signal.h> #include<syslog.h> #include<fcntl.h> static int daemon_proc 0; #defin…...
Kafka Tool(Kafka 可视化工具)安装及使用教程
Kafka Tool(Kafka 可视化工具)安装及使用教程 Kafka Tool 工具下载 下载地址 http://www.kafkatool.com/download.html 下载界面 不同版本的Kafka对应不同版本的工具,个人使用的是2.11,所以下载的是最新的2.0.8版本ÿ…...
【大揭秘】美团面试题:ConcurrentHashMap和Hashtable有什么区别?一文解析!
正文 亲爱的小伙伴们,大家好!我是小米,一个热爱技术分享的程序员,今天我为大家带来了一篇有关美团面试题的热门话题:ConcurrentHashMap 和 Hashtable 有什么区别。这个问题在Java面试中常常被拿来考察对多线程编程的理…...
爬虫基础 JS逆向
爬虫核心 1. HTTP协议与WEB开发 1. 什么是请求头请求体,响应头响应体 2. URL地址包括什么 3. get请求和post请求到底是什么 4. Content-Type是什么 (1)简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)…...
nextTick实现原理
答题思路: 此题实际考查vue异步更新策略说出vue是怎么通过异步、批量的方式更新以提高性能的最后把源码中实现说一下 回答范例: vue有个批量、异步更新策略,数据变化时,vue开启一个队列,并缓冲在同一事件循环中发生的…...
CentOS 7中安装ZooKeeper
文章目录 下载解压安装环境变量配置文件启动设置开机自启动开放端口 CentOS 7.6 ZooKeeper 3.5.7 本文介绍了如何在CentOS 7系统中安装单机版的ZooKeeper。 下载 点击官网下载 解压安装 # 解压 tar -xzvf apache-zookeeper-3.5.7-bin.tar.gz sudo mv apache-zookeeper-3.5.…...
推荐《幽游白书》
《幽游白书》是日本漫画家富坚义博于1990年12月3日—1994年7月25日于集英社旗下杂志《周刊少年Jump》上连载的少年漫画作品,全175话(含外传一话)。现时发行的单行本共计19册,电子版由漫番漫画、哔哩哔哩漫画发布 [1-2] 。 本作最…...
Linux MMC子系统 - 1.eMMC简介
By: Ailson Jack Date: 2023.10.21 个人博客:http://www.only2fire.com/ 本文在我博客的地址是:http://www.only2fire.com/archives/160.html,排版更好,便于学习,也可以去我博客逛逛,兴许有你想要的内容呢。…...
聊聊Android线程优化这件事
一、背景 在日常开发APP的过程中,难免需要使用第二方库和第三方库来帮助开发者快速实现一些功能,提高开发效率。但是,这些库也可能会给线程带来一定的压力,主要表现在以下几个方面: 线程数量增多:一些库可…...
Linux性能优化--实用工具:性能工具助手
8.0 概述 本章介绍一些在Linux系统上可用的实用程序,它们能够加强性能工具的有效性和可用性。实用工具本身不是性能工具,但是当它们与性能工具一起使用时,它们可以帮助完成如下功能:自动执行繁琐的任务、分析性能统计数据&#x…...
[PyTorch]即插即用的热力图生成
先上张效果图,本来打算移植霹雳老师的使用Pytorch实现Grad-CAM并绘制热力图。但是看了下代码,需要骨干网络按照标准写法(即将特征层封装为features数组),而我写的网络图省事并没有进行封装,改造网络的代价又…...
golang笔记18--go并发多线程
golang笔记18--go并发多线程 介绍核心用法MutexRWMutexWaitGroupCondOncemapPoolContextselect 注意事项参考文档 介绍 大家都知道go语言近年来越来越火了,其中有一个要点是go语言在并发场景有很高的性能,比如可以通过启动很多个 goroutine 来执行并发任…...
使用OkHttp和Java来下载
以下是一个使用OkHttp和Java来下载内容的下载器程序,同时使用了jshk.com.cn/get_proxy来获取代理服务器。请注意,为了简化代码,我们将忽略一些异常处理和安全性检查。 import java.io.File;import java.io.FileOutputStream;import java.io.I…...
HttpServlet源码分析及HttpServletRequest接口
2023.10.20 HttpServlet HttpServlet类是专门为HTTP协议准备的。比GenericServlet更加适合HTTP协议下的开发。 http包下都有哪些类和接口呢?(jakarta.servlet.http.*) jakarta.servlet.http.HttpServlet (HTTP协议专用的Servlet…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
