当前位置: 首页 > news >正文

常见分布整理

概率论 - 常见分布(及其分布表)

常见分布的期望和方差

离散型分布

两点分布

有2种结果,实验只做1次
在这里插入图片描述
X~b(1,p)则有
P(X = k) = pk (1-p)1-k,k = 0, 1
数学期望:E(X) = p
方差:D(X)=p(1-p)

二项分布

P(A) = p,在n次实验中,事件A发生了k次。

记作:X ~ B(n, p)
P(X = k) = Ckn pk(1-p)n-k
期望:E(X) = np
方差:D(X) = np(1-p)=npq

最可能值:
(1)当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
(2)当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
注:[x]为不超过x的最大整数。

若满足二项分布X ~ B(n, p),其中n足够大(n≥100),且 np≤10 时。
可以将其近似于泊松分布 X ~ P(np)【λ = np】,然后在查表就可以了。

泊松分布

泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
记作:X ~ P(λ)
在这里插入图片描述
EX = DX = λ

几何分布

实验E只有两个可能的结果A和A的对立事件B,P(A) = p, P(B) = 1 - p(0<p<1),把实验E重复独立地进行下去,直到事件A首次发生,所需要的试验次数X(1,2,3……)
X~Ge( p)
P(x = k) = (1-p)k-1p, k = 1, 2,3……
EX= 1/p
DX = q / p2

超几何分布

共有N件产品,其中有M件次品。从中任取n件,次品数量为x
在这里插入图片描述
X ~ H(n,M,N)

随机型

均匀分布

一个均匀分布在区间[a, b]上的连续型随机变量X可给出如下概率密度函数:
在这里插入图片描述
X~U(a, b)
EX = (a + b) / 2
DX = (b-a)2/12

指数分布(寿命分布)

某一特定事件发生所需等待时间。
概率密度函数:
在这里插入图片描述
X~E(λ)
EX = 1 / λ
DX = 1 / λ2

正态分布(高斯分布)

两头小中间大,左右还对称
在这里插入图片描述
在这里插入图片描述
EX= μ
DX= σ2

相关文章:

常见分布整理

概率论 - 常见分布&#xff08;及其分布表&#xff09; 常见分布的期望和方差 离散型分布 两点分布 有2种结果&#xff0c;实验只做1次 X~b(1,p)则有 P(X k) pk (1-p)1-k,k 0, 1 数学期望&#xff1a;E(X) p 方差&#xff1a;D(X)p(1-p) 二项分布 P(A) p&#xff0…...

ubuntu终端命令行下如何使用NetworkManager(netplan)来配置wifi网络

最近在给家里折腾一个文件共享服务器给家里的小米摄像头保存监控视频用。树莓派太贵了&#xff0c;找来找去发现香橙派orangepi zero3 是最低成本的替代解决方案&#xff08;网络足够快&#xff0c;CPU的IO能力足够强&#xff09;&#xff0c;香橙派orangepi zero3的操作系统是…...

GO学习之 goroutine的调度原理

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…...

CUDA学习笔记5——CUDA程序错误检测

CUDA程序错误检测 所有CUDA的API函数都有一个类型为cudaError_t的返回值&#xff0c;代表了一种错误信息&#xff1b;只有返回cudaSuccess时&#xff0c;才是成功调用。 cudaGetLastError()用来检测核函数的执行是否出错cudaGetErrorString()输出错误信息 #include <stdi…...

虹科 | 解决方案 | 机械免拆压力测试方案

对于发动机的气门卡滞或气门开闭时刻错误、活塞环磨损、喷油嘴泄漏/堵塞等故障&#xff0c;往往需要解体发动机或拆卸部件才能发现&#xff1b;而对于某些轻微的故障&#xff0c;即使解体了发动机后也经常难于肉眼判别 虹科Pico提供的WPS500压力测试方案&#xff0c;可以动态测…...

Python数据挖掘实用案例——自动售货机销售数据分析与应用

&#x1f680;欢迎来到本文&#x1f680; &#x1f349;个人简介&#xff1a;陈童学哦&#xff0c;目前学习C/C、算法、Python、Java等方向&#xff0c;一个正在慢慢前行的普通人。 &#x1f3c0;系列专栏&#xff1a;陈童学的日记 &#x1f4a1;其他专栏&#xff1a;CSTL&…...

深度学习技巧应用29-软件设计模式与神经网络巧妙结合,如何快速记忆软件设计模式

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下软件设计模式与神经网络巧妙结合&#xff0c;如何快速记忆软件设计模式。我们知道软件设计模式有23种&#xff0c;考试的时候经常会考到&#xff0c;但是这么种里面我们如何取判断它呢&#xff0c;如何去记忆它呢&a…...

中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件

中文编程开发语言工具应用案例&#xff1a;ps5体验馆计时收费管理系统软件 软件部分功能&#xff1a; 1、计时计费功能&#xff1a;只需点开始计时即可&#xff0c;时间直观显示 2、商品管理功能&#xff1a;可以管理饮料等商品 3、会员管理功能&#xff1a;支持只用手机号作…...

绘制核密度估计图

简介 核密度估计图&#xff08;Kernel Density Estimation&#xff0c;KDE&#xff09;是一种用于估计数据分布的非参数方法&#xff0c;通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数&#xff08;PDF&#xff09;来显示数据的分布特征&#xff0c…...

基于深度学习网络的蔬菜水果种类识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1数据集准备 4.2构建深度学习模型 4.3模型训练 4.4模型评估 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; wa…...

UE4 距离场

在项目设置的渲染模块可打开距离场 把该节点连上&#xff0c;该节点的意思是&#xff0c;距离表面越近&#xff0c;材质显示值为0 不接近表面时&#xff1a; 接近表面时 可勾选该值即可看到距离场具体效果&#xff1a; 未接触表面时&#xff1a; 接触表面时&#xff1a; 产生…...

【SA8295P 源码分析 (四)】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析

【SA8295P 源码分析】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析 一、emac_rx_thread_handler():通过POLL 轮询方式获取数据二、emac_rx_poll_mq():调用 pdata->clean_rx() 来处理消息三、emac_configure_rx_fun_ptr():配置 pdata->…...

VR全景广告:让消费者体验沉浸式交互,让营销更有趣

好的产品都是需要广告宣传的&#xff0c;随着科技的不断发展&#xff0c;市面上的广告也和多年前的传统广告不同&#xff0c;通过VR技术&#xff0c;可以让广告的观赏性以及科技感更加强烈&#xff0c;并且相比于视频广告&#xff0c;成本也更低。 在广告营销中&#xff0c;关键…...

论文阅读 | RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow ECCV2020光流任务best paper 论文地址&#xff1a;【here】 代码地址&#xff1a;【here】 介绍 光流是对两张相邻图像中的逐像素运动的一种估计。目前碰到的一些困难包括&#xff1a;物体的快速运动&#xff…...

神经网络的发展历史

神经网络的发展历史可以追溯到上世纪的数学理论和生物学研究。以下是神经网络发展史的详细概述&#xff1a; 早期的神经元模型&#xff1a; 1943年&#xff0c;Warren McCulloch和Walter Pitts提出了一种神经元模型&#xff0c;被称为MCP神经元模型&#xff0c;它模拟了生物神经…...

【单元测试】--单元测试最佳实践

一、单元测试代码风格 编写单元测试代码时&#xff0c;遵循一致的风格和最佳实践是非常重要的&#xff0c;因为它有助于提高代码的可读性、可维护性和可靠性。以下是一些常见的单元测试代码风格和最佳实践&#xff1a; 命名约定&#xff1a; 测试方法的名称应当清晰、描述性&…...

llava1.5-部署

llava1.5 ——demo部署 下载代码和权重 新建weights文件夹&#xff0c;并下载到LLaVA/weights/中。->需要修改文件名为llava-版本&#xff0c;例如llava-v1.5-7b. 运行 启动控制台 python -m llava.serve.controller --host 0.0.0.0 --port 4006启动gradio python -m…...

倒计时 1 天|KCD 2023 杭州站

距离「KCD 2023 杭州站」开始只有 1 天啦 大家快点预约到现场哦&#xff5e; KCD 2023 活动介绍 HANGZHOU 关于 KCD Kubernetes Community Days&#xff08;KCD&#xff09;由云原生计算基金会&#xff08;CNCF&#xff09;发起&#xff0c;由全球各国当地的 CNCF 大使、CNCF 员…...

什么是模拟芯片,模拟芯片都有哪些测试指标?

模拟芯片又称处理模拟信号的集成电路 模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路&#xff0c;如运算放大器、模拟乘法器、锁相环、电源管理芯片等。 模拟集成电路的主要构成电路有&#xff1a;放…...

C++-json(2)-unsigned char-unsigned char*-memcpy-strcpy-sizeof-strlen

1.类型转换&#xff1a; //1.赋值一个不知道长度的字符串unsigned char s[] "kobe8llJfFwFSPiy"; //1.用一个字符串初始化变量 unsigned int s_length strlen((char*)s); //2.获取字符串长度//2.字符串里有双引号"" 需要…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...