动手学深度学习—使用块的网络VGG(代码详解)
目录
- 1. VGG块
- 2. VGG网络
- 3. 训练模型
1. VGG块
经典卷积神经网络的基本组成部分是下面的这个序列:
1.带填充以保持分辨率的卷积层;
2.非线性激活函数,如ReLU;
3.汇聚层,如最大汇聚层。
定义网络块,便于我们重复构建某些网络架构,不仅利于代码编写与阅读也利于后面参数的优化
"""定义了一个名为vgg_block的函数来实现一个VGG块:1、卷积层的数量num_convs2、输入通道的数量in_channels 3、输出通道的数量out_channels
"""
import torch
from torch import nn
from d2l import torch as d2l# 定义vgg块,(卷积层数,输入通道,输出通道)
def vgg_block(num_convs, in_channels, out_channels):# 创建空网络结果,之后通过循环操作使用append函数进行添加layers = []# 循环操作,添加卷积层和非线性激活层for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channels# 最后添加最大值汇聚层layers.append(nn.MaxPool2d(kernel_size=2, stride=2))return nn.Sequential(*layers)
2. VGG网络

由于会重复用到卷积层、激活函数ReLU和汇聚层,我们将这三个组合成一个块,每次引用这个块来构建网络模型。
通过定义VGG块,使得重复的网络结构实现起来更加容易,也利于代码阅读。
# 原VGG网络有5个卷积块,前两个有一个卷积层,后三个块有两个卷积层
# 该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11# (卷积层数,输出通道数)
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
实现VGG-11:使用8个卷积层和3个全连接层
# 通过for循环实现VGG-11
def vgg(conv_arch):# 定义空网络结构conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:# 添加vgg块conv_blks.append(vgg_block(num_convs, in_channels, out_channels))# 下一层输入通道数=当前层输出通道数in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)
构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状
# 构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:X = blk(X)print(blk.__class__.__name__, 'output shape:\t', X.shape)
每一层的输出形状

3. 训练模型
构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集
# 构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集
ratio = 4
# //为整除
small_conv_arch = [(pair[0], pair[1] // 4) for pair in conv_arch]
net = vgg(small_conv_arch)
定义精度评估函数
"""定义精度评估函数:1、将数据集复制到显存中2、通过调用accuracy计算数据集的精度
"""
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save# 判断net是否属于torch.nn.Module类if isinstance(net, nn.Module):net.eval()# 如果不在参数选定的设备,将其传输到设备中if not device:device = next(iter(net.parameters())).device# Accumulator是累加器,定义两个变量:正确预测的数量,总预测的数量。metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:# 将X, y复制到设备中if isinstance(X, list):# BERT微调所需的(之后将介绍)X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)# 计算正确预测的数量,总预测的数量,并存储到metric中metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]
定义GPU 训练函数
"""定义GPU训练函数:1、为了使用gpu,首先需要将每一小批量数据移动到指定的设备(例如GPU)上;2、使用Xavier随机初始化模型参数;3、使用交叉熵损失函数和小批量随机梯度下降。
"""
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""# 定义初始化参数,对线性层和卷积层生效def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)# 在设备device上进行训练print('training on', device)net.to(device)# 优化器:随机梯度下降optimizer = torch.optim.SGD(net.parameters(), lr=lr)# 损失函数:交叉熵损失函数loss = nn.CrossEntropyLoss()# Animator为绘图函数animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])# 调用Timer函数统计时间timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# Accumulator(3)定义3个变量:损失值,正确预测的数量,总预测的数量metric = d2l.Accumulator(3)net.train()# enumerate() 函数用于将一个可遍历的数据对象for i, (X, y) in enumerate(train_iter):timer.start() # 进行计时optimizer.zero_grad() # 梯度清零X, y = X.to(device), y.to(device) # 将特征和标签转移到devicey_hat = net(X)l = loss(y_hat, y) # 交叉熵损失l.backward() # 进行梯度传递返回optimizer.step()with torch.no_grad():# 统计损失、预测正确数和样本数metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop() # 计时结束train_l = metric[0] / metric[2] # 计算损失train_acc = metric[1] / metric[2] # 计算精度# 进行绘图if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))# 测试精度test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc))# 输出损失值、训练精度、测试精度print(f'loss {train_l:.3f}, train acc {train_acc:.3f},'f'test acc {test_acc:.3f}')# 设备的计算能力print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec'f'on {str(device)}')

进行训练
# 学习率略高
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
相关文章:
动手学深度学习—使用块的网络VGG(代码详解)
目录 1. VGG块2. VGG网络3. 训练模型 1. VGG块 经典卷积神经网络的基本组成部分是下面的这个序列: 1.带填充以保持分辨率的卷积层; 2.非线性激活函数,如ReLU; 3.汇聚层,如最大汇聚层。 定义网络块,便于我…...
性能优化:JIT即时编译与AOT提前编译
优质博文:IT-BLOG-CN 一、简介 JIT与AOT的区别: 两种不同的编译方式,主要区别在于是否处于运行时进行编译。 JIT:Just-in-time动态(即时)编译,边运行边编译:在程序运行时,根据算法计算出热点代码…...
抖音同城榜:探索城市新潮流
随着科技的飞速发展,短视频已经成为了人们日常生活中不可或缺的一部分。作为短视频领域的佼佼者,抖音一直致力于为用户带来更丰富、更有趣的短视频内容。抖音同城榜应运而生,成为了最新、最热门的话题聚集地,吸引了大量潮流达人和…...
云表|低代码开发崛起:重新定义企业级应用开发
低代码开发这个概念在近年来越来越受到人们的关注,市场对于低代码的需求也日益增长。据Gartner预测,到2025年,75%的大型企业将使用至少四种低代码/无代码开发工具,用于IT应用开发和公民开发计划。 那么,为什…...
【算法题】2906. 构造乘积矩阵
题目: 给你一个下标从 0 开始、大小为 n * m 的二维整数矩阵 grid ,定义一个下标从 0 开始、大小为 n * m 的的二维矩阵 p。如果满足以下条件,则称 p 为 grid 的 乘积矩阵 : 对于每个元素 p[i][j] ,它的值等于除了 g…...
机器学习基础之《回归与聚类算法(4)—逻辑回归与二分类(分类算法)》
一、什么是逻辑回归 1、逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广…...
UWB安全数据通讯STS-加密、身份认证
DW3000系列才能支持UWB安全数据通讯,DW1000不支持 IEEE 802.15.4a没有数据通讯安全保护机制,IEEE 802.15.4z中指定的扩展得到增强(在PHY/RF级别):增添了一个重要特性“扰频时间戳序列(STS)”&a…...
vue3中去除eslint严格模式
vue3中去除eslint严格模式 1、全局搜索:extends 2、一般在package.json或者vue.config.js中,直接删除掉vue/standard,重启项目。(在package.json文件中,编译不允许有注释,所以直接删掉)...
Win10如何彻底关闭wsappx进程?
Win10如何彻底关闭wsappx进程?在Win10电脑中,用户看到了wsappx进程占用了大量的系统资源,所以想结束wsappx进程,提升电脑的运行速度。但是,用户们不知道彻底关闭掉wsappx进程的方法,那么接下来小编就给大家…...
docker 安装 sftpgo
sftpgo 简介 sftpgo 是一个功能齐全且高度可配置的 SFTP 服务器,具有可选的 HTTP/S、FTP/S 和 WebDAV 支持。支持多种存储后端:本地文件系统、加密本地文件系统、S3(兼容)对象存储、Google 云存储、Azure Blob 存储、SFTP。 官…...
threejs (一) 创建一个场景
引入 npm install three import * as THREE from three;const scene new THREE.Scene();或者使用bootCDN复制对应的版本连接 <script src"https://cdn.bootcdn.net/ajax/libs/three.js/0.156.1/three.js"></script>基础知识 场景、相机、渲染器 通过…...
二分查找,求方程多解
1.暴力遍历: 解为两位小数,故0.001的范围肯定可以包含(零点存在) 2.均分为区间长度为1的小区间(由于两解,距离不小于1),一个区间最多一个解 1.防止两边端点都为解 2&…...
代码随想录算法训练营第二十九天 | 回溯算法总结
代码随想录算法训练营第二十九天 | 回溯算法总结 1. 组合问题 1.1 组合问题 在77. 组合中,我们开始用回溯法解决第一道题目:组合问题。 回溯算法跟k层for循环同样是暴力解法,为什么用回溯呢?回溯法的魅力,用递…...
运算方法和运算电路
一、逻辑门电路 1、逻辑门电路基础总结 2、异或运算妙用 3、逻辑常用公式 二、加法器(重点) 1、标志位的生成原理 2、加法器总结 三、多路门选择器,三态门...
计算机网络篇之TCP滑动窗口
文章目录 前言概述 前言 在网络数据传输时,若传输的原始数据包比较大,会将数据包分解成多个数据包进行发送。需要对数据包确认后,才能发送下一个数据包。在等待确认包的这个过程浪费了大量的时间,不过还好TCP引入了滑动窗口的概念…...
本地安装telepresence,访问K8S集群 Mac(m1) 非管理員
kubeconfig 一.安装telepresence 1.安装 Telepresence Quickstart | Telepresence (1)brew install datawire/blackbird/telepresence 2.配置 目录kubectl 将使用默认的 kubeconfig 文件:$HOME/.kube/config 创建文件夹&…...
今日思考(2) — 训练机器学习模型用GPU还是NUP更有优势(基于文心一言的回答)
前言 深度学习用GPU,强化学习用NPU。 1.训练深度学习模型,强化学习模型用NPU还是GPU更有优势 在训练深度学习模型时,GPU相比NPU有优势。GPU拥有更高的访存速度和更高的浮点运算能力,因此更适合深度学习中的大量训练数据、大量矩阵…...
8.3 C++ 定义并使用类
C/C语言是一种通用的编程语言,具有高效、灵活和可移植等特点。C语言主要用于系统编程,如操作系统、编译器、数据库等;C语言是C语言的扩展,增加了面向对象编程的特性,适用于大型软件系统、图形用户界面、嵌入式系统等。…...
Git学习笔记——超详细
Git笔记 安装git: apt install git 创建版本库: git init 添加文件到版本库: git add 文件 提交文件到仓库: git commit -m “注释” 查看仓库当前的状态信息: git status 查看修改内容和之前版本的区别&am…...
Locust负载测试工具实操
本中介绍如何使用Locust为开发的服务/网站执行负载测试。 Locust 是一个开源负载测试工具,可以通过 Python 代码构造来定义用户行为,避免混乱的 UI 和臃肿的 XML 配置。 步骤 设置Locust。 在简单的 HTTP 服务上模拟基本负载测试。 准备条件 Python…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
