当前位置: 首页 > news >正文

动手学深度学习—使用块的网络VGG(代码详解)

目录

  • 1. VGG块
  • 2. VGG网络
  • 3. 训练模型

1. VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:
1.带填充以保持分辨率的卷积层;
2.非线性激活函数,如ReLU;
3.汇聚层,如最大汇聚层。

定义网络块,便于我们重复构建某些网络架构,不仅利于代码编写与阅读也利于后面参数的优化

"""定义了一个名为vgg_block的函数来实现一个VGG块:1、卷积层的数量num_convs2、输入通道的数量in_channels 3、输出通道的数量out_channels
"""
import torch
from torch import nn
from d2l import torch as d2l# 定义vgg块,(卷积层数,输入通道,输出通道)
def vgg_block(num_convs, in_channels, out_channels):# 创建空网络结果,之后通过循环操作使用append函数进行添加layers = []# 循环操作,添加卷积层和非线性激活层for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channels# 最后添加最大值汇聚层layers.append(nn.MaxPool2d(kernel_size=2, stride=2))return nn.Sequential(*layers)

2. VGG网络

在这里插入图片描述
由于会重复用到卷积层、激活函数ReLU和汇聚层,我们将这三个组合成一个块,每次引用这个块来构建网络模型。
通过定义VGG块,使得重复的网络结构实现起来更加容易,也利于代码阅读。

# 原VGG网络有5个卷积块,前两个有一个卷积层,后三个块有两个卷积层
# 该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11# (卷积层数,输出通道数)
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

实现VGG-11:使用8个卷积层和3个全连接层

# 通过for循环实现VGG-11
def vgg(conv_arch):# 定义空网络结构conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:# 添加vgg块conv_blks.append(vgg_block(num_convs, in_channels, out_channels))# 下一层输入通道数=当前层输出通道数in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状

# 构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:X = blk(X)print(blk.__class__.__name__, 'output shape:\t', X.shape)

每一层的输出形状
在这里插入图片描述

3. 训练模型

构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集

# 构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集
ratio = 4
# //为整除
small_conv_arch = [(pair[0], pair[1] // 4) for pair in conv_arch]
net = vgg(small_conv_arch)

定义精度评估函数

"""定义精度评估函数:1、将数据集复制到显存中2、通过调用accuracy计算数据集的精度
"""
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save# 判断net是否属于torch.nn.Module类if isinstance(net, nn.Module):net.eval()# 如果不在参数选定的设备,将其传输到设备中if not device:device = next(iter(net.parameters())).device# Accumulator是累加器,定义两个变量:正确预测的数量,总预测的数量。metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:# 将X, y复制到设备中if isinstance(X, list):# BERT微调所需的(之后将介绍)X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)# 计算正确预测的数量,总预测的数量,并存储到metric中metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]

定义GPU 训练函数

"""定义GPU训练函数:1、为了使用gpu,首先需要将每一小批量数据移动到指定的设备(例如GPU)上;2、使用Xavier随机初始化模型参数;3、使用交叉熵损失函数和小批量随机梯度下降。
"""
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""# 定义初始化参数,对线性层和卷积层生效def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)# 在设备device上进行训练print('training on', device)net.to(device)# 优化器:随机梯度下降optimizer = torch.optim.SGD(net.parameters(), lr=lr)# 损失函数:交叉熵损失函数loss = nn.CrossEntropyLoss()# Animator为绘图函数animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])# 调用Timer函数统计时间timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# Accumulator(3)定义3个变量:损失值,正确预测的数量,总预测的数量metric = d2l.Accumulator(3)net.train()# enumerate() 函数用于将一个可遍历的数据对象for i, (X, y) in enumerate(train_iter):timer.start() # 进行计时optimizer.zero_grad() # 梯度清零X, y = X.to(device), y.to(device) # 将特征和标签转移到devicey_hat = net(X)l = loss(y_hat, y) # 交叉熵损失l.backward() # 进行梯度传递返回optimizer.step()with torch.no_grad():# 统计损失、预测正确数和样本数metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop() # 计时结束train_l = metric[0] / metric[2] # 计算损失train_acc = metric[1] / metric[2] # 计算精度# 进行绘图if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))# 测试精度test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc))# 输出损失值、训练精度、测试精度print(f'loss {train_l:.3f}, train acc {train_acc:.3f},'f'test acc {test_acc:.3f}')# 设备的计算能力print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec'f'on {str(device)}')

在这里插入图片描述

进行训练

# 学习率略高
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述
块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。

相关文章:

动手学深度学习—使用块的网络VGG(代码详解)

目录 1. VGG块2. VGG网络3. 训练模型 1. VGG块 经典卷积神经网络的基本组成部分是下面的这个序列: 1.带填充以保持分辨率的卷积层; 2.非线性激活函数,如ReLU; 3.汇聚层,如最大汇聚层。 定义网络块,便于我…...

性能优化:JIT即时编译与AOT提前编译

优质博文:IT-BLOG-CN 一、简介 JIT与AOT的区别: 两种不同的编译方式,主要区别在于是否处于运行时进行编译。 JIT:Just-in-time动态(即时)编译,边运行边编译:在程序运行时,根据算法计算出热点代码&#xf…...

抖音同城榜:探索城市新潮流

随着科技的飞速发展,短视频已经成为了人们日常生活中不可或缺的一部分。作为短视频领域的佼佼者,抖音一直致力于为用户带来更丰富、更有趣的短视频内容。抖音同城榜应运而生,成为了最新、最热门的话题聚集地,吸引了大量潮流达人和…...

云表|低代码开发崛起:重新定义企业级应用开发

低代码开发这个概念在近年来越来越受到人们的关注,市场对于低代码的需求也日益增长。据Gartner预测,到2025年,75%的大型企业将使用至少四种低代码/无代码开发工具,用于IT应用开发和公民开发计划。 那么,为什…...

【算法题】2906. 构造乘积矩阵

题目: 给你一个下标从 0 开始、大小为 n * m 的二维整数矩阵 grid ,定义一个下标从 0 开始、大小为 n * m 的的二维矩阵 p。如果满足以下条件,则称 p 为 grid 的 乘积矩阵 : 对于每个元素 p[i][j] ,它的值等于除了 g…...

机器学习基础之《回归与聚类算法(4)—逻辑回归与二分类(分类算法)》

一、什么是逻辑回归 1、逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广…...

UWB安全数据通讯STS-加密、身份认证

DW3000系列才能支持UWB安全数据通讯,DW1000不支持 IEEE 802.15.4a没有数据通讯安全保护机制,IEEE 802.15.4z中指定的扩展得到增强(在PHY/RF级别):增添了一个重要特性“扰频时间戳序列(STS)”&a…...

vue3中去除eslint严格模式

vue3中去除eslint严格模式 1、全局搜索:extends 2、一般在package.json或者vue.config.js中,直接删除掉vue/standard,重启项目。(在package.json文件中,编译不允许有注释,所以直接删掉)...

Win10如何彻底关闭wsappx进程?

Win10如何彻底关闭wsappx进程?在Win10电脑中,用户看到了wsappx进程占用了大量的系统资源,所以想结束wsappx进程,提升电脑的运行速度。但是,用户们不知道彻底关闭掉wsappx进程的方法,那么接下来小编就给大家…...

docker 安装 sftpgo

sftpgo 简介 sftpgo 是一个功能齐全且高度可配置的 SFTP 服务器,具有可选的 HTTP/S、FTP/S 和 WebDAV 支持。支持多种存储后端:本地文件系统、加密本地文件系统、S3(兼容)对象存储、Google 云存储、Azure Blob 存储、SFTP。 官…...

threejs (一) 创建一个场景

引入 npm install three import * as THREE from three;const scene new THREE.Scene();或者使用bootCDN复制对应的版本连接 <script src"https://cdn.bootcdn.net/ajax/libs/three.js/0.156.1/three.js"></script>基础知识 场景、相机、渲染器 通过…...

二分查找,求方程多解

1.暴力遍历&#xff1a; 解为两位小数&#xff0c;故0.001的范围肯定可以包含&#xff08;零点存在&#xff09; 2.均分为区间长度为1的小区间&#xff08;由于两解&#xff0c;距离不小于1&#xff09;&#xff0c;一个区间最多一个解 1.防止两边端点都为解 2&…...

代码随想录算法训练营第二十九天 | 回溯算法总结

​ 代码随想录算法训练营第二十九天 | 回溯算法总结 1. 组合问题 1.1 组合问题 在77. 组合中&#xff0c;我们开始用回溯法解决第一道题目&#xff1a;组合问题。 回溯算法跟k层for循环同样是暴力解法&#xff0c;为什么用回溯呢&#xff1f;回溯法的魅力&#xff0c;用递…...

运算方法和运算电路

一、逻辑门电路 1、逻辑门电路基础总结 2、异或运算妙用 3、逻辑常用公式 二、加法器&#xff08;重点&#xff09; 1、标志位的生成原理 2、加法器总结 三、多路门选择器&#xff0c;三态门...

计算机网络篇之TCP滑动窗口

文章目录 前言概述 前言 在网络数据传输时&#xff0c;若传输的原始数据包比较大&#xff0c;会将数据包分解成多个数据包进行发送。需要对数据包确认后&#xff0c;才能发送下一个数据包。在等待确认包的这个过程浪费了大量的时间&#xff0c;不过还好TCP引入了滑动窗口的概念…...

本地安装telepresence,访问K8S集群 Mac(m1) 非管理員

kubeconfig 一&#xff0e;安装telepresence 1.安装 Telepresence Quickstart | Telepresence &#xff08;1&#xff09;brew install datawire/blackbird/telepresence 2.配置 目录kubectl 将使用默认的 kubeconfig 文件&#xff1a;$HOME/.kube/config 创建文件夹&…...

今日思考(2) — 训练机器学习模型用GPU还是NUP更有优势(基于文心一言的回答)

前言 深度学习用GPU&#xff0c;强化学习用NPU。 1.训练深度学习模型&#xff0c;强化学习模型用NPU还是GPU更有优势 在训练深度学习模型时&#xff0c;GPU相比NPU有优势。GPU拥有更高的访存速度和更高的浮点运算能力&#xff0c;因此更适合深度学习中的大量训练数据、大量矩阵…...

8.3 C++ 定义并使用类

C/C语言是一种通用的编程语言&#xff0c;具有高效、灵活和可移植等特点。C语言主要用于系统编程&#xff0c;如操作系统、编译器、数据库等&#xff1b;C语言是C语言的扩展&#xff0c;增加了面向对象编程的特性&#xff0c;适用于大型软件系统、图形用户界面、嵌入式系统等。…...

Git学习笔记——超详细

Git笔记 安装git&#xff1a; apt install git 创建版本库&#xff1a; git init 添加文件到版本库&#xff1a; git add 文件 提交文件到仓库&#xff1a; git commit -m “注释” 查看仓库当前的状态信息&#xff1a; git status 查看修改内容和之前版本的区别&am…...

Locust负载测试工具实操

本中介绍如何使用Locust为开发的服务/网站执行负载测试。 Locust 是一个开源负载测试工具&#xff0c;可以通过 Python 代码构造来定义用户行为&#xff0c;避免混乱的 UI 和臃肿的 XML 配置。 步骤 设置Locust。 在简单的 HTTP 服务上模拟基本负载测试。 准备条件 Python…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...