当前位置: 首页 > news >正文

数据结构与算法之打家劫舍(一)动态规划思想

动态规划里面一部题目打家劫舍是一类经典的算法题目之一,他有各种各样的变式,这一篇文章和大家分享一下打家劫舍最基础的一道题目,掌握这一道题目,为下一道题目打下基础。我们直接进入正题。

一.题目

大家如果刚接触这样的题目,会有点困惑,当前的状态我是偷还是不偷呢?

仔细一想,当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。

所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:

二.动态规划五部曲

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

2.确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多人容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

3.dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

代码如下:

vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);

4.确定遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

代码如下:

for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}

5.举例推导dp数组

以示例二,输入[2,7,9,3,1]为例。

红框dp[nums.size() - 1]为结果。

以上分析完毕,C++代码如下:

class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];vector<int> dp(nums.size());dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
};

Java代码如下:

// 动态规划
class Solution {public int rob(int[] nums) {if (nums == null || nums.length == 0) return 0;if (nums.length == 1) return nums[0];int[] dp = new int[nums.length];dp[0] = nums[0];dp[1] = Math.max(dp[0], nums[1]);for (int i = 2; i < nums.length; i++) {dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);}return dp[nums.length - 1];}
}

总结:

打家劫舍是DP解决的经典题目,这道题也是打家劫舍入门级题目,后面我们还会变种方式来打劫的。

做算法题最重要的就是坚持。大家加油!

相关文章:

数据结构与算法之打家劫舍(一)动态规划思想

动态规划里面一部题目打家劫舍是一类经典的算法题目之一&#xff0c;他有各种各样的变式&#xff0c;这一篇文章和大家分享一下打家劫舍最基础的一道题目&#xff0c;掌握这一道题目&#xff0c;为下一道题目打下基础。我们直接进入正题。一.题目大家如果刚接触这样的题目&…...

无人驾驶路径规划论文简要

A Review of Motion Planning Techniques for Automated Vehicles综述和分类0Motion Planning for Autonomous Driving with a Conformal Spatiotemporal Lattice从unstructured环境向structured环境的拓展&#xff0c;同时还从state lattice拓展到了spatiotemporal lattice从而…...

C++ sort()函数和priority_queue容器中比较函数的区别

普通的queue是一种先进先出的数据结构&#xff0c;元素在队列尾追加&#xff0c;而从队列头删除。priority_queue中元素被赋予优先级。在创建的时候根据优先级进行了按照从大到小或者从小到大进行了自动排列&#xff08;大顶堆or小顶堆&#xff09;。可以以O(log n) 的效率查找…...

STM32开发(14)----CubeMX配置ADC

CubeMX配置ADC前言一、什么是ADC&#xff1f;二、实验过程1.单通道ADC采集STM32CubeMX配置代码实现2.多通道ADC采样(非DMA)STM32CubeMX配置代码实现3.多通道ADC采样&#xff08;DMA&#xff09;STM32CubeMX配置代码实现总结前言 本章介绍使用STM32CubeMX对ADC进行配置的方法&a…...

Simple RNN、LSTM、GRU序列模型原理

一。循环神经网络RNN 用于处理序列数据的神经网络就叫循环神经网络。序列数据说直白点就是随时间变化的数据&#xff0c;循环神经网络它能够根据这种数据推出下文结果。RNN是通过嵌含前一时刻的状态信息实行训练的。 RNN神经网络有3个变种&#xff0c;分别为Simple RNN、LSTM、…...

【原创】java+swing+mysql生肖星座查询系统设计与实现

今天我们来开发一个比较有趣的系统&#xff0c;根据生日查询生肖星座&#xff0c;输入生日&#xff0c;系统根据这个日期自动计算出生肖和星座信息反馈到界面。我们还是使用javaswingmysql去实现这样的一个系统。 功能分析&#xff1a; 生肖星座查询系统&#xff0c;顾名思义…...

CentOS 环境 OpneSIPS 3.1 版本安装及使用

文章目录1. OpenSIPS 源码下载2. 工具准备3. 编译安装4. opensips-cli 工具安装5. 启动 OpenSIPS 实例1. OpenSIPS 源码下载 使用以下命令即可下载 OpenSIPS 的源码&#xff0c;笔者下载的是比较稳定的 3.1 版本&#xff0c;读者有兴趣也可前往 官方传送门 sudo git clone htt…...

SQL95 从 Products 表中检索所有的产品名称以及对应的销售总数

描述 Products 表中检索所有的产品名称&#xff1a;prod_name、产品id&#xff1a;prod_idprod_idprod_namea0001egga0002socketsa0013coffeea0003colaOrderItems代表订单商品表&#xff0c;订单产品&#xff1a;prod_id、售出数量&#xff1a;quantityprod_idquantitya0001105…...

平时技术积累很少,面试时又会问很多这个难题怎么破?别慌,没事看看这份Java面试指南,解决你的小烦恼!

前言技术面试是每个程序员都需要去经历的事情&#xff0c;随着行业的发展&#xff0c;新技术的不断迭代&#xff0c;技术面试的难度也越来越高&#xff0c;但是对于大多数程序员来说&#xff0c;工作的主要内容只是去实现各种业务逻辑&#xff0c;涉及的技术难度并不高&#xf…...

SQL Server 数据库的备份

为何要备份数据库&#xff1f; 备份 SQL Server 数据库、在备份上运行测试还原过程以及在另一个安全位置存储备份副本可防止可能的灾难性数据丢失。 备份是保护数据的唯一方法 。 使用有效的数据库备份&#xff0c;可从多种故障中恢复数据&#xff0c;例如&#xff1a; 介质…...

NCNN Conv量化详解1

1. NCNN的Conv量化计算流程 正常的fp32计算中,一个Conv的计算流程如下: 在NCNN Conv进行Int8计算时,计算流程如下: NCNN首先将输入(bottom_blob)和权重(weight_blob)量化成INT8,在INT8下计算卷积,然后反量化到fp32,再和未量化的bias相加,得到输出(top_blob) 输入和…...

Redis大key多key拆分方案

业务场景中经常会有各种大key多key的情况&#xff0c; 比如&#xff1a;1&#xff1a;单个简单的key存储的value很大2&#xff1a;hash&#xff0c; set&#xff0c;zset&#xff0c;list 中存储过多的元素&#xff08;以万为单位&#xff09;3&#xff1a;一个集群存储了上亿的…...

python的类如何使用?兔c同学一篇关于python类的博文概述

本章内容如目录 所示&#xff1a; 文章目录1. 创建和使用类1.1 创建第一个python 类1.2 版本差异1.3 根据类创建实例1. 访问属性2. 调用方法3. 创建多个实例2. 使用类和实例2.1 给属性指定默认值2.2 修改属性的值3. 继承3.1 子类的 __init __()3.2 给子类定义属性和方法3.3 重写…...

Day60 动态规划总结

647. 回文子串 回文的做法注定我们得从里面入手&#xff0c;逐渐扩散到边界 初始化&#xff1a;准备一个ans&#xff0c;找到一个回文子串加一个 dp [[0] * n for _ in range(n)]ans 0 遍历公式&#xff1a; 当s[i]s[j]的时候&#xff0c;只要里面还是回文串&#xff0c;就能…...

UVM仿真环境搭建

环境 本实验使用环境为&#xff1a; Win10平台下的Modelsim SE-64 2019.2 代码 dut代码&#xff1a; module dut(clk,rst_n, rxd,rx_dv,txd,tx_en); input clk; input rst_n; input[7:0] rxd; input rx_dv; output [7:0] txd; output tx_en;reg[7:0] txd; reg tx_en;always…...

Azure AI基础到实战(C#2022)-认知服务(1)

目录 Azure 认知服务概述计算机视觉概述数据隐私和安全性计算机视觉快速入门光学字符识别 (OCR)OCR APIOCR 常用功能Azure 门户准备两种部署方式OCR项目实战之车牌识别Azure 认知服务概述 Azure 认知服务是基于云的人工智能 (AI) 服务,可帮助开发人员在不具备直接的 AI 或数据…...

光栅化Triangles(笔记)

field of view (可见区域) 该角度越大,需要透视投影的角度越大,成像显示的内容越多 有Y值,则可得出成像范围 屏幕: 典型的光栅处理设备所有像素都被表示为x,y坐标轴形式 3D方块成像步骤: 先将其所在平面化为 与屏幕等长等宽的形式: 如何将一个三角形拆成像素&#xff1f;采样…...

【Oarcle】如何显示日本年号的日期格式 ?

语句大于一切&#xff0c;还需要语言吗&#xff1f; 1. SELECT TO_CHAR(SYSDATE,EEYY/MM/DD,NLS_CALENDAR JAPANESE IMPERIAL) from dual;结果是&#xff1a; 令和05/02/25 Oracle SQL文中&#xff0c;年月日的显示&#xff0c;一定要使用双引号括起来&#xff0c;如 select…...

57_Pandas中的json_normalize将字典列表转换为DataFrame

57_Pandas中的json_normalize将字典列表转换为DataFrame 可以使用 pandas.json_normalize() 将具有公共键的字典列表转换为 pandas.DataFrame。 由于它是一种常用的JSON格式&#xff0c;可以通过Web API获取&#xff0c;所以能够将其转换为pandas.DataFrame是非常方便的。 在…...

OpenAPI SDK组件之javassist字节码

javassist介绍 Javassist是一个开源的分析、编辑和创建Java字节码的类库&#xff0c;主要优点是简单&#xff0c;不需要了解虚拟机指令&#xff0c;就能动态改变类的结构&#xff0c;或者动态生成类。 apisdk应用javassist 在apisdk中主要依靠javassist增强开发者声明的开放…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...