【STM32】时钟设置函数(寄存器版)
一、STM32时钟设置函数移植
1.时钟模块回顾
一个疑问
前面代码并没有设置时钟为什么可以直接使用。
2.时钟树
3.时钟树分析
1.内部晶振(HSI)
内部晶振不稳定,当我们上电后,会自动产生振动,自动产生时钟,但是晶振不稳定。
不经过PPLMUL,默认使用8MHZ。所以如果我们想要72MHZ,则需要使用外部晶振
2.外部晶振(HSE)
当接上外部晶振,当接通电源之后,不用软件操作,会自动产生振动。可以进行分频等操作。
从外部接上外部晶振的时候,我们需要等待一段时间,让其稳定后,才开始工作。(所以要进行判断)
3.PLLMUL
当上电后,经过他时,要等待一段时间,让其稳定后,才可以开始工作。(所以我们有一个寄存器专门用来判断其是否准备好开始工作,当我们去读取到其准备好了才可以进行下一步)
二、代码移植
#ifndef __CLOCK_H__
#define __CLOCK_H__#include "gpio.h"// 寄存器宏定义
// RCC寄存器基地址为0x40021000
#define RCC_BASE 0x40021000 // RCC部分寄存器的基地址
#define RCC_CR (RCC_BASE + 0x00) // RCC_CR的地址
#define RCC_CFGR (RCC_BASE + 0x04)#define FLASH_ACR 0x40022000// 用C语言来访问寄存器的宏定义
#define rRCC_CR (*((volatile unsigned int *)RCC_CR))
#define rRCC_CFGR (*((volatile unsigned int *)RCC_CFGR))
#define rFLASH_ACR (*((volatile unsigned int *)FLASH_ACR))// 函数作用:时钟源切换到HSE并且使能PLL,将主频设置为72MHz
void Set_SysClockTo72M(void);#endif
1.复位RCC_CR寄存器
#define rRCC_APB2ENR (*((unsigned int *)RCC_APB2ENR))
RCC->CR就相当于rRCC_APB2ENR
//复位RCC_CR寄存器rRCC_CR=0x00000083;
2.开启外部时钟(就是开启外部晶振)
&:将某一些位置0
|:将某一些位置1
//开启外部时钟(外部晶振)//第一步:先置0【将bit16清零】rRCC_CR &= ~(1<<16);//关闭HSEON//第二步:在置1rRCC_CR |= (1<<16);//打开HSEON,让HSE开始工作
3.检测外部时钟开启是否成功(HSEREDY)
do while十分适合检测是否超时!!!!!!!
do{//检测HSEREAY(bit17)是否为1,1表示准备好Rcc_CR_HSE_Ready=rRCC_CR&(1<<17);//取出bit17faultTime++;}while((faultTime<0x0fffffff) && (Rcc_CR_HSE_Ready==0))//跳出do-while 1)要么超时2)要么准好了
4.当准备好进入下一步
5.Flash的设置
rFLASH_ACR |= 0x10;rFLASH_ACR &= (~0x03);rFLASH_ACR |= (0x02);
6.对其进行预分频
//HPRE【AHB】:对应bit4-bit7:不分频(000)//PPRE1【APB1】:对应bit8-bit10:进行二分频(100)//PPRE2【APB2】:对应bit11-bit13:不分频(000)//AHB和APB2未分频,APB1被2分频//所以最终:AHB和APB2都是72MHZ,APB1是36MHZ//第一步:先置0rRCC_CFGR=(~((0x0f<<4) | (0x07<<8) | (0x07<<11)));//等价于:rRCC_CFGR=(~(0x3ff<<4));//第二步:置1rRCC_CFGR=(((0x0<<4) | (0x04<<8) | (0x0<<11)));
7.设置SHE为输入时钟,同时HSE不分频
//设置为输入时钟:bit16//设置为不分频:bit17//第一步:先置0rRCC_CFGR &=(~((1<<16) | (1<<17)));//第二步:置1rRCC_CFGR |= ((1<<18) | (0<<17));
8.设置PLL倍频系数
因为我们在开发板上接上的外部晶振就是8MHZ,如果我们想要在内部使用72MHZ,则需要在内部进行分频率(9倍)
//9分频:0111:0x07rRCC_CFGR &=(~(0x0f<<18));//清零bit18-bit21rRCC_CFGR |= (0x07<<18);//设置为9倍频
9.打开使能
//七、打开PLL开关rRCC_CR |= (1<<24);
10.等待开启PLL开启成功
//八、等待开启PLL开启成功do{Rcc_CR_PLL_Ready=rRcc_CR & (1<<25);//检测第25位是否为1faultTime++;}while((faultTime<0x0fffffff) && (Rcc_CR_PLL_Ready==0))
11.将PLL作为SYSCLK的时钟来源
//到这里说明PLL已经稳定,可以用了,下面可以切换成外部时钟了rRCC_CFGR &=(~(0x03)<<0);rRCC_CFGR |=(0x10<<0);
12. 判断切换成PLL是否成功
do{RCC_CF_SWS_PLL=rRCC_CFGR & (0x03<<2);//读出bit2-bit3faultTime++;//0x02<<2:表示此时转换成PLL}while((faultTime<0x0fffffff) && (Rcc_CR_PLL_Ready!=(0x02<<2)))
13.此时PLL转换成功
14.完整代码
#include "clock.h"void Set_SysClockTo72M(void){//检测外部晶振是否准备好unsigned int Rcc_CR_HSE_Ready=0;//等待开启PLL开启成功unsigned int Rcc_CR_PLL_Ready=0;//判断切换成PLL是否成功unsigned int RCC_CF_SWS_PLL=0;unsigned int faultTime=0;//判断等待是否超时//一、复位RCC_CR寄存器rRCC_CR = 0x00000083;//二、开启外部时钟(外部晶振)//第一步:先置0【将bit16清零】rRCC_CR &= ~(1<<16);//关闭HSEON//第二步:在置1rRCC_CR |= (1<<16);//打开HSEON,让HSE开始工作//三、检测外部时钟开启是否成功do{//检测HSEREAY(bit17)是否为1,1表示准备好Rcc_CR_HSE_Ready=rRCC_CR&(1<<17);//取出bit17faultTime++;}while((faultTime<0x0fffffff) && (Rcc_CR_HSE_Ready==0));//跳出do-while 1)要么超时2)要么准好了//判断是超时还是准备好//注意点:不能直接使用“Rcc_CR_HSE_Ready”因为rRCC_CR是需要读一次寄存器//但是读出的结果可能还未改变,所以一定不能直接使用if((rRCC_CR&(1<<17))!=0)//rRCC_CR&(1<<17)==1{//这里HSE就ready,下面再去配置PLL并且等待他ready//四、对其进行预分频//HPRE【AHB】:对应bit4-bit7:不分频(000)//PPRE1【APB1】:对应bit8-bit10:进行二分频(100)//PPRE2【APB2】:对应bit11-bit13:不分频(000)//AHB和APB2未分频,APB1被2分频//所以最终:AHB和APB2都是72MHZ,APB1是36MHZ//第一步:先置0rRCC_CFGR=(~((0x0f<<4) | (0x07<<8) | (0x07<<11)));//等价于:rRCC_CFGR=(~(0x3ff<<4));//第二步:置1rRCC_CFGR=(((0x0<<4) | (0x04<<8) | (0x0<<11)));//五、设置SHE为输入时钟,同时HSE不分频//选择HSE作为PLL输入并且HSE不分频//设置为输入时钟:bit16//设置为不分频:bit17//第一步:先置0rRCC_CFGR &=(~((1<<16) | (1<<17)));//第二步:置1,bit16rRCC_CFGR |= ((1<<18) | (0<<17));//六、设置PLL倍频系数//9分频:0111:0x07rRCC_CFGR &=(~(0x0f<<18));//清零bit18-bit21rRCC_CFGR |= (0x07<<18);//设置为9倍频//七、打开PLL开关rRCC_CR |= (1<<24);//八、等待开启PLL开启成功do{Rcc_CR_PLL_Ready=rRCC_CR & (1<<25);//检测第25位是否为1faultTime++;}while((faultTime<0x0fffffff) && (Rcc_CR_PLL_Ready==0));if((rRCC_CR & (1<<25)) == (1<<25)){//到这里说明PLL已经稳定,可以用了,下面可以切换成外部时钟了//九、切换成PLLrRCC_CFGR &=(~(0x03)<<0);rRCC_CFGR |=(0x10<<0);//十、判断切换成PLL是否成功do{RCC_CF_SWS_PLL=rRCC_CFGR & (0x03<<2);//读出bit2-bit3faultTime++;//0x02<<2:表示此时转换成PLL}while((faultTime<0x0fffffff) && (Rcc_CR_PLL_Ready!=(0x02<<2)));//十一、此时PLL转换成功if((rRCC_CFGR & (0x03<<2))==(0x02<<2)){//到这里我们的时钟整个就设置好了,可以结束了}else{//到这里说明PLL输出作为PLL失败while(1);}}else{//到这里说明PLL启动时出错了,PLL不能稳定工作while(1);}}else{//超时,或者未准备好,此时HSE不可以使用while(1);}}
三、问题解决
1.我们想要让led快速闪3下,然后换成72MHZ的频率接着闪
void delay(){unsigned int i=0,j=0;for(i=0;i<1000;i++){for(j=0;j<2000;j++){}}
}void led_init(){rRCC_APB2ENR = 0x00000008;rGPIOB_CRH = 0x33333333;rGPIOB_ODR = 0x0000ff00;//全灭}
void led_flash(void){unsigned int i=0;for(i=0;i<3;i++){rGPIOB_ODR = 0x00000000;//全亮delay();rGPIOB_ODR = 0x0000ff00;//全灭delay();}
}
void main(void){led_init();led_flash();Set_SysClockTo72M();led_flash();
}
但是实际上并无法实现,只能在闪烁完3次后就熄灭。
2.问题解决
led初始化时,默认是全亮的
1.degger方法
把点亮led灯的函数加到clock中去,看看代码运行到哪里不会亮
2.判断超时变量的初始化
因为我们多次使用到超时变量,则每一个进入do-while循环之前要重新置0
3.出错点
相关文章:

【STM32】时钟设置函数(寄存器版)
一、STM32时钟设置函数移植 1.时钟模块回顾 一个疑问 前面代码并没有设置时钟为什么可以直接使用。 2.时钟树 3.时钟树分析 1.内部晶振(HSI) 内部晶振不稳定,当我们上电后,会自动产生振动,自动产生时钟,…...
【DDD】贫血模型和充血模型
基于业务开发的项目大多是MVC架构的。成为Web项目的标准开发模式,但它却是违反面向对象编程风格的,是面向过程的。之后基于领域驱动设计开发模式被人提倡。 DDD(Domain-driven design)领域驱动设计是一种通过将实现连接到持续进化…...
【JS学习】字符串的substring方法
1. 介绍 substring 是JavaScript字符串对象的一个方法,用于从一个字符串中提取子字符串,并返回提取的部分。 可以使用 substring 方法来截取字符串的一部分,指定起始索引和结束索引(或只指定起始索引)。 这个方法不…...
vue部署,chunk文件有部分404,解决方案
排查方案: 1,检查项目配置,再vue.config.js里面配置 publicPath: "./",2,打包后检查报错文件是否存在打包目录 3,如果1,2都有 找到部署后404的文件,查看是否为空文件 style里面全注释也会打包文…...

《红蓝攻防对抗实战》六.常规反弹之利用NC在windows系统执行反弹shell
目录 一.利用NC工具在windows系统执行反弹shell 1. Windows正向连接shell 2.Windows反向连接shell 前文推荐: 《红蓝攻防对抗实战》一. 隧道穿透技术详解《红蓝攻防对抗实战》二.内网探测协议出网之TCP/UDP协议探测出网《红蓝攻防对抗实战》三.内网探测协议出网…...

python如何创建自己的对冲交易算法
在这篇文章中,我解释了如何创建一个人工智能来每天为我进行自动交易。 随着机器学习的现代进步和在线数据的轻松访问,参与量化交易变得前所未有的容易。为了让事情变得更好,AWS 等云工具可以轻松地将交易想法转化为真正的、功能齐全的交易机器…...

Ubuntu22.04安装,SSH无法连接
Ubuntu初始化安装后,系统默认不允许root通过ssh连接,因此需要完成三个设置 1.修改ssh配置文件 vim /etc/ssh/sshd_config 将PermitRootLogin注释打开,并将值改为yes 保存修改并退出 :wq 2.重启ssh服务 sudo service ssh restart 3.重新打…...

解决dirsearch扫描工具pkg_resources模块警告问题
一、pkg_resources模块问题 ┌──(kali㉿kali)-[~/桌面/XXX/dirsearch-master] └─$ python dirsearch.py -h /home/kali/XX/XXXX/dirsearch-master/dirsearch.py:23: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io…...

JAVA-编程基础-11-04-java IO 字符流
Lison <dreamlison163.com>, v1.0.0, 2023.05.07 JAVA-编程基础-11-04-java IO 字符流 文章目录 JAVA-编程基础-11-04-java IO 字符流字符流Reader 和 Writer字符输入流(Reader)**FileReader构造方法****FileReader读取字符数据** 字符输出流&am…...

亚马逊云代码AI助手CodeWhisperer使用教程
一、CodeWhisperer 简介 1、CodeWhisperer是一款基于机器学习的通用代码生成器,由Amazon出品,可以给我们提供代码建议。 2、CodeWhisperer 基于各种上下文线索提供建议,包括光标在源代码中的位置、位于光标前面的代码、注释,以及…...

2023全新小程序广告流量主奖励发放系统源码 流量变现系统
2023全新小程序广告流量主奖励发放系统源码 流量变现系统 分享软件,吃瓜视频,或其他资源内容,通过用户付费买会员来变现,用户需要付费,有些人喜欢白嫖,所以会流失一部分用户,所以就写了这个系统…...

最详细STM32,cubeMX外部中断
这篇文章将详细介绍 cubeMX外部中断的配置,实现过程。 文章目录 前言一、外部中断的基础知识。二、cubeMX 配置外部中断三、自动生成的代码解析四、代码实现。总结 前言 实验开发板:STM32F103C8T6。所需软件:keil5 , cubeMX 。实…...

云栖大会?全部免费!!抢先一步看!
2023云栖大会定档10月31日! 点击链接免费预约云栖门票: 2023云栖大会-领票页面 2023 云栖大会将于 10.31-11.2 在杭州云栖小镇举办,深度拥抱大数据AI 核心技术,见证阿里云大数据AI产品年度重磅发布及创新。开放融合的科技展示平…...
Linux常用的调试工具
在开发和调试Linux的过程中,经常会遇到各种各样的问题,如程序崩溃、性能低下、内存泄漏等。这时候,调试就显得尤为重要。调试技巧和工具能够帮助开发人员快速定位问题并快速解决。在本文中,我们将介绍一些常用的Linux调试技巧和工…...

PX4-Autopilot下载与编译
文章目录 1 Git clone 代码2 下载子模块3 编译4 可能遇到的问题参考 1 Git clone 代码 Github Repository 链接:PX4-Autopilot 查看现有版本: 在终端用命令下载,-b表示branch git clone -b v1.14.0 https://github.com/PX4/PX4-Autopilot.…...

关于数据可视化那些事
干巴巴的数据没人看,数据可视化才能直观展现数据要点,提升数据分析、数字化运营决策效率。那关于可视化的实现方式、技巧、工具等,你了解几分?接下来,我们就来聊聊数据可视化那些事。 1、什么是数据可视化?…...

【Java小知识点】类加载器的区别
🎄欢迎来到边境矢梦的csdn博文🎄 🎄本文主要梳理Java类加载器的区别🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下🫰ᾯ…...

分布式微服务技术栈-SpringCloud<Eureka,Ribbon,nacos>
微服务技术栈 一、微服务 介绍了解1 架构结构案例与 springboot 兼容关系拆分案例拆分服务拆分-服务远程调用 2 eureka注册中心Eureka-提供者与消费者Eureka-eureka原理分析Eureka-搭建eureka服务Eureka-服务注册Eureka-服务发现 3 Ribbon组件 负载均衡Ribbon-负载均衡原理Ribb…...

Unity解决:导出AndroidStudio工程 出现如下报错的解决方法
unity2019.4+ androidStudio2023.x+ 问题1: cvc-complex-type.2.4.a: 发现了以元素 base-extension 开头的无效内容。应以 {layoutlib} 之一开头。 解决:第一个Build.gradle更改如下 // GENERATED BY UNITY. REMOVE THIS COMMENT TO PREVENT OVERWRITING WHEN EXPORTING …...

Mac电脑怎么在Dock窗口预览,Dock窗口预览工具DockView功能介绍
DockView是一款Mac电脑上的软件,它可以增强Dock的功能,让用户更方便地管理和切换应用程序。 DockView的主要功能是在 DockQ,栏上显示每个窗口的缩略图,并提供了一些相关的操作选项。当用户将鼠标悬停在Dock栏上的应用程序图标上时…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...