2023最新MongoDB规范
前言
MongoDB是非关系型数据库的典型代表,DB-Engines Ranking 数据显示,近年来,MongoDB在 NoSQL领域一直独占鳌头。MongoDB是为快速开发互联网应用 而设计的数据库系统,其数据模型和持 久化策略就是为了构建高读/写的性能,并且可以方面的弹性拓展。随着MongoDB的普及和使用量的快 速增长,为了规范使用,便于管理和获取更高的性能,整理此文档。我们从 数据库设计规范、集合设计 规范、索引设计规范、文档设计规范、API使用规范、连接规范等方面进行阐述和要求。
存储选型
-
主要解决大量数据的访问效率问题, 减少mysql 压力。MongoDB内建了多种数据分片的特性,可 以很好的适应大数据量的需求。内建的Sharding分片特性避免系统在数据增长的过程中遇到性能瓶颈。
-
复杂数据结构,以多种不同查询条件去查询同一份数据。MongoDB的BSON数据格式非常适合文 档化格式的存储及查询;支持丰富的查询表达式,可轻易查询文档中内嵌的对象和数组及子文档。
-
非事务并且关联性集合不强的都可以使用(MongoDB4.0+支持跨Collection事务,MongoDB4.2+支持跨Shard事务)。
-
无多文档事务性需求及复杂关联检索。
-
业务快速迭代,需求频繁变动业务。
-
数据模型不固定,存储格式灵活场景。
-
单集群读写并发过大无法支撑业务增长。
-
期望 5 个 9 的数据库高可用场景。
一、库设计规范
-
【强制】数据库命名规范:db_xxxx
-
【强制】库名全部小写,禁止使用任何_以外的特殊字符,禁止使用数字打头的库名,如:123_abc;
说明:库以文件夹的形式存在,使用特殊字符或其它不规范的命名方式会导致命名混乱
3. 【强制】数据库名称最多为 64 个字符。
- 【强制】在创建新的库前应尽量评估该库的体积、QPS等,提前与DBA讨论是应该新建一个库还是专门为该库创建一个新的集群。
二、集合设计规范
1.【强制】集合名全部小写,禁止使用任何_以外的特殊字符,禁止使用数字打头的集合名,如:123_abc,禁止system打头; system是系统集合前缀;
2.【强制】集合名称最多为64字符;
3.【建议】一个库中写入较大的集合会影响其它集合的读写性能,如果业务比较繁忙的集合在一个DB中,建议最多80个集合,同时也要考虑磁盘I/O的性能;
4.【建议】如果评估单集合数据量较大,可以将一个大表拆分为多个小表,然后将每一个小表存放在独立的库中或者sharding分表;
5.【建议】MongoDB的集合拥有”自动清理过期数据”的功能,只需在该集合中文档的时间字段增加一个TTL索引即可实现该功能,但需要注意的是该字段的类型则必须是mongoDate(),一定要结合实际业务设计是否需要;
6.【建议】设计轮询集合—集合是否设计为Capped限制集,一定要结合实际业务设计是否需要。
创建集合规则
不同的业务场景是可以使用不同的配置;
db.createCollection(“logs”,
{ “storageEngine”: { “wiredTiger”:
{ “configString”: “internal_page_max=16KB,
leaf_page_max=16KB,leaf_value_max=8KB,os_cache_max=1GB”} }
})
a. 如果是读多写少的表在创建时我们可以尽量将 page size 设置的比较小 ,比如 16KB,如果表数据量不大 (“internal_page_max=16KB,leaf_page_max=16KB,leaf_value_max=8KB,os_cache_max=1GB”)
b. 如果这个读多写少的表数据量比较大,可以为其设置一个压缩算法,例如:”block_compressor=zlib, internal_page_max=16KB,leaf_page_max=16KB,leaf_value_max=8KB”
c. 注意:该zlib压缩算法不要使用,对cpu消耗特别大,如果使用snapp消耗20% cpu,而且使用zlib能消耗90%cpu,甚至100%
d. 如果是写多读少的表,可以将 leaf_page_max 设置到 1MB,并开启压缩算法,也可以为其制定操作系统层面 page cache 大小的 os_cache_max 值,让它不会占用太多的 page cache 内存,防止影响读操作
读多写少的表 internal_page_max=16KB 默认为4KB leaf_page_max=16KB 默认为32KB leaf_value_max=8KB 默认为64MB os_cache_max=1GB 默认为0 读多写少的表 而且数据量比较大 block_compressor=zlib 默认为snappy internal_page_max=16KB 默认为4KB leaf_page_max=16KB 默认为32KB leaf_value_max=8KB 默认为64M
三、文档设计规范
1.【强制】集合中的 key 禁止使用任何 “_”(下划线)以外的特殊字符。
2.【强制】尽量将同样类型的文档存放在一个集合中,将不同类型的文档分散在不同的集合中;相同类型的文档能够大幅度提高索引利用率,如果文档混杂存放则可能会出现查询经常需要全表扫描的情况;
3.【建议】禁止使用_id,如:向_id中写入自定义内容;
说明:MongoDB的表与InnoDB相似,都是索引组织表,数据内容跟在主键后,而_id是MongoDB中的默认主键,一旦_id的值为非自增,当数据量达到一定程度之后,每一次写入都可能导致主键的二叉树大幅度调整,这将是一个代价极大的写入, 所以写入就会随着数据量的增大而下降,所以一定不要在_id中写入自定义的内容。
4.【建议】尽量不要让数组字段成为查询条件;
5.【建议】如果字段较大,应尽量压缩存放;
不要存放太长的字符串,如果这个字段为查询条件,那么确保该字段的值不超过1KB;MongoDB的索引仅支持1K以内的字段,如果你存入的数据长度超过1K,那么它将无法被索引
6.【建议】尽量存放统一了大小写后的数据 ;
7.【建议】如果评估单集合数据量较大,可以将一个大表拆分为多个小表,然后将每一个小表存放在独立的库中或者sharding分表。
四、索引设计规范
1.【强制】MongoDB 的组合索引使用策略与 MySQL 一致,遵循”最左原则”;
2.【强制】索引名称长度不要超过 128 字符;
3.【强制】应尽量综合评估查询场景,通过评估尽可能的将单列索引并入组合索引以降低所以数量,结合1,2点;
4.【建议】优先使用覆盖索引;
5.【建议】创建组合索引的时候,应评估索引中包含的字段,尽量将数据基数大(唯一值多的数据)的字段放在组合索引的前面;
6.【建议】MongoDB 支持 TTL 索引,该索引能够按你的需要自动删除XXX秒之前的数据并会尽量选择在业务低峰期执行删除操作;看业务是否需要这一类型索引;
7.【建议】在数据量较大的时候,MongoDB 索引的创建是一个缓慢的过程,所以应当在上线前或数据量变得很大前尽量评估,按需创建会用到的索引;
8.【建议】如果你存放的数据是地理位置信息,比如:经纬度数据。那么可以在该字段上添加 MongoDB 支持的地理索引:2d 及 2dsphere,但他们是不同的,混用会导致结果不准确。
五、API使用规范
1.【强制】在查询条件的字段或者排序条件的字段上必须创建索引;
2.【强制】查询结果只包含需要的字段,而不查询所有字段;
3.【强制】在文档级别更新是原子性的,这意味着一条更新 10 个文档的语句可能在更新 3 个文档后由于某些原因失败。应用程序必须根据自己的策略来处理这些失败;
4.【建议】单个文档的BSON size不能超过16M;
5.【建议】禁用不带条件的update、remove或者find语句;
6.【建议】限定返回记录条数,每次查询结果不超过 2000 条。如果需要查询 2000 条以上的数据,在代码中使用多线程并发查询;
7.【建议】在写入数据的时候,如果你需要实现类似 MySQL 中 INSERT INTO ON DUPLICATE KEY UPDATE 的功能,那么可以选择 upsert() 函数;
8.【建议】写入大量数据的时候可以选择使用 batchInsert,但目前 MongoDB 每一次能够接受的最大消息长度为48MB,如果超出48MB,将会被自动拆分为多个48MB的消息;
9.【建议】索引中的-1和1是不一样的,一个是逆序,一个是正序,应当根据自己的业务场景建立适合的索引排序,需要注意的是{a:1,b:-1} 和 {a:-1,b:1}是一样的;
10.【建议】在开发业务的时候尽量检查自己的程序性能,可以使用 explain() 函数检查你的查询执行详情,另外 hint() 函数相当于 MySQL 中的 force index();
11.【建议】如果你结合体积大小/文档数固定,那么建议创建 capped(封顶)集合,这种集合的写入性能非常高并无需专门清理老旧数据,需要注意的是 capped 表不支持remove() 和 update()操作;
12.【建议】查询中的某些操作符可能会导致性能低下,如ne,not,exists,nin,or,尽量在业务中不要使用;
exist:因为松散的文档结构导致查询必须遍历每一个文档
ne:如果当取反的值为大多数,则会扫描整个索引
not:可能会导致查询优化器不知道应当使用哪个索引,所以会经常退化为全表扫描
nin:全表扫描
or:有多少个条件就会查询多少次,最后合并结果集,所以尽可能的使用in
13.【建议】不要一次取出太多的数据进行排序,MongoDB 目前支持对32MB以内的结果集进行排序,如果需要排序,那么请尽量限制结果集中的数据量;
14.【建议】MongoDB 的聚合框架非常好用,能够通过简单的语法实现复杂的统计查询,并且性能也不错;
15.【建议】如果需要清理掉一个集合中的所有数据,那么 remove() 的性能是非常低下的,该场景下应当使用 drop();remove() 是逐行操作,所以在删除大量数据的时候性能很差;
16.【建议】在使用数组字段做为查询条件的时候,将与覆盖索引无缘;这是因为数组是保存在索引中的,即便将数组字段从需要返回的字段中剔除,这样的索引仍然无法覆盖查询;
17.【建议】在查询中如果有范围条件,那么尽量和定值条件放在一起进行过滤,并在创建索引的时候将定值查询字段放在范围查询字段前。
六、连接规范
1.【强制】正确连接副本集,副本集提供了数据的保护、高可用和灾难恢复的机制。如果主节点宕 机,其中一个从节点会自动提升为从节点。
2.【建议】合理控制连接池的大小,限制连接数资源,可通过Connection String URL中的 maxPoolSize 参数来配置连接池大小。
3.【建议】复制集读选项 默认情况下,复制集的所有读请求都发到Primary,Driver可通过设置的Read Preference 来将 读请求路由到其他的节点。
相关文章:
2023最新MongoDB规范
前言 MongoDB是非关系型数据库的典型代表,DB-Engines Ranking 数据显示,近年来,MongoDB在 NoSQL领域一直独占鳌头。MongoDB是为快速开发互联网应用 而设计的数据库系统,其数据模型和持 久化策略就是为了构建高读/写的性能&#x…...

gcc的使用,调试工具gdb的使用
gcc编译 gcc编译可以分为四个步骤,预处理、编译、汇编、链接。 预处理命令:gcc -E hello.c -o hello.i编译命令:gcc -S hello.i -o hello.s汇编命令: gcc -c hello.s -o hello.o链接命令:gcc hello.o -o hello gcc…...

Python变量的定义和使用
定义:变量就是计算机内存中存储某些数据的位置的名称 形象理解变量就是一个存放东西的容器,该容器的名字就叫做变量,容器存放的东西就是变量的值 变量的组成: 标识:标识对象所储存的内存地址,使用内置函数i…...

SSM框架-AOP概述、Spring事务
16 spring整合mybatis 16.1 前情代码 实体类 public class Account {private Integer id;private String name;private Double money;public Integer getId() {return id;}public void setId(Integer id) {this.id id;}public String getName() {return name;}public void …...

一文搞定Android Vsync原理简析
屏幕渲染原理"现代计算机之父"冯诺依曼提出了计算机的体系结构: 计算机由运算器,存储器,控制器,输入设备和输出设备构成,每部分各司其职,它们之间通过控制信号进行交互。计算机发展到现在,已经出…...

第八届蓝桥杯省赛 C++ B组 - K 倍区间
✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📚专栏地址:蓝桥杯题解集合 📝原题地址:K 倍区间 📣专栏定位:为想参加蓝桥杯的小伙伴整理常考算法题解,祝大家…...

UDP与TCP协议
目录 UDP协议 协议报头 UDP协议特点: 应用场景: TCP TCP协议报头 确认应答机制 理解可靠性 超时重传机制 连接管理机制 三次握手: 四次挥手: 滑动窗口 如何理解缓冲区和滑动窗口? 倘若出现丢包…...
rosbag相关使用工具
文章目录一、 rosbag 导出指定话题生成新rosbag二、 rosbag 导出视频1. 脚本工具源码2. 操作2.1 安装 ffmpeg2.2 导出视频3. 视频截取4. 压缩视频附录:rosbag2video.py 源码一、 rosbag 导出指定话题生成新rosbag rosbag filter 2023-02-25-19-16-01.bag depth.bag…...
数据结构与算法—栈stack
目录 栈 栈的复杂度 空间复杂度O(1) 时间复杂度O(1) 栈的应用 1、栈在函数调用中的应用; 2、栈在求表达式的值的应用: 栈的实现 栈 后进先出,先进后出,只允许在一端插入和删除 从功能上,数组和链表可以代替栈…...
【学习笔记】[ARC150F] Constant Sum Subsequence
第一眼看上去,这道题一点都不套路 第二眼看上去,大概是要考dpdpdp优化,那没事了,除非前面333道题都做完了否则直接做这道题肯定很亏 首先我们要定义一个好的状态。废话 设fsf_{s}fs表示BBB序列的和为sss时,能达到…...
Node.js实现大文件断点续传—浅析
Node.js简介: 当谈论Node.js时,通常指的是一个基于Chrome V8 JavaScript引擎构建的开源、跨平台的JavaScript运行时环境。以下是一些Node.js的内容: 事件驱动编程:Node.js采用了事件驱动的编程范式,这意味着它可以异步…...

Spring Cloud Nacos源码讲解(九)- Nacos客户端本地缓存及故障转移
Nacos客户端本地缓存及故障转移 在Nacos本地缓存的时候有的时候必然会出现一些故障,这些故障就需要进行处理,涉及到的核心类为ServiceInfoHolder和FailoverReactor。 本地缓存有两方面,第一方面是从注册中心获得实例信息会缓存在内存当…...

MySQL知识点小结
事务 进行数据库提交操作时使用事务就是为了保证四大特性,原子性,一致性,隔离性,持久性Durability. 持久性:事务一旦提交,对数据库的改变是永久的. 事务的日志用于保存对数据的更新操作. 这个操作T1事务操作的会发生丢失,因为最后是T2提交的修改,而且T2先进行一次查询,按照A…...

MySQL关于NULL值,常见的几个坑
数据库版本MySQL8。 1.count 函数 觉得 NULL值 不算数 ,所以开发中要避免count的时候丢失数据。 如图所示,以下有7条记录,但是count(name)却只有6条。 为什么丢失数据?因为MySQL的count函数觉得 Null值不算数,就是说…...

OllyDbgqaqazazzAcxsaZ
本文通过吾爱破解论坛上提供的OllyDbg版本为例,讲解该软件的使用方法 F2对鼠标所处的位置打下断点,一般表现为鼠标所属地址位置背景变红F3加载一个可执行程序,进行调试分析,表现为弹出打开文件框F4执行程序到光标处F5缩小还原当前…...

Elasticsearch7.8.0版本进阶——自定义分析器
目录一、自定义分析器的概述二、自定义的分析器的测试示例一、自定义分析器的概述 Elasticsearch 带有一些现成的分析器,然而在分析器上 Elasticsearch 真正的强大之 处在于,你可以通过在一个适合你的特定数据的设置之中组合字符过滤器、分词器、词汇单 …...
spring事务-创建代理对象
用来开启事务的注解EnableTransactionManagement上通过Import导入了TransactionManagementConfigurationSelector组件,TransactionManagementConfigurationSelector类的父类AdviceModeImportSelector实现了ImportSelector接口,因此会调用public final St…...

Linux 配置NFS与autofs自动挂载
目录 配置NFS服务器 安装nfs软件包 配置共享目录 防火墙放行相关服务 配置NFS客户端 autofs自动挂载 配置autofs 配置NFS服务器 nfs主配置文件参数(/etc/exports) 共享目录 允许地址1访问(选项1,选项2) 循序地…...

【编程入门】应用市场(Python版)
背景 前面已输出多个系列: 《十余种编程语言做个计算器》 《十余种编程语言写2048小游戏》 《17种编程语言10种排序算法》 《十余种编程语言写博客系统》 《十余种编程语言写云笔记》 《N种编程语言做个记事本》 目标 为编程初学者打造入门学习项目,使…...

异常信息记录入库
方案介绍 将异常信息放在日志里面,如果磁盘定期清理,会导致很久之前的日志丢失,因此考虑将日志中的异常信息存在表里,方便后期查看定位问题。 由于项目是基于SpringBoot构架的,所以采用AdviceControllerExceptionHand…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...