当前位置: 首页 > news >正文

基于机器视觉的图像拼接算法 计算机竞赛

前言

图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。

再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


一、拼接效果

依照惯例, 废话不多说,先上拼接效果

拼接左图:
在这里插入图片描述

拼接右图:

在这里插入图片描述
拼接效果:
在这里插入图片描述

拼接前:
在这里插入图片描述
拼接后:
在这里插入图片描述

二、算法介绍

1.拼接算法简介

图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。

图像拼接目前有很多算法,图像拼接的质量,主要依赖于图像的配准程度,因此通过不同的图像匹配方式将算法分为以下两种:

1.1 基于区域相关拼接算法

该算法比较传统和普遍,从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异(1.通过累加各点灰度的差值,2.计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高,3.两者中计算相关系数的效果更好)。对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。
也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

1.2 基于特征相关拼接算法

于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。

1.3 拼接算法的基本流程
  • 根据给定图像/集,实现特征匹配
  • 通过匹配特征计算图像之间的变换结构
  • 利用图像变换结构,实现图像映射
  • 针对叠加后的图像,采用APAP之类的算法, 对齐特征点
  • 通过图割方法,自动选取拼接缝
  • 根据multi-band bleing策略实现融合

2. 拼接算法原理

2.1 第一种:特征匹配

特征是要匹配的两个输入图像中的元素,为了给图像提供更好的特征匹配,采用角点匹配,进行定量测量。在视点变化时,角点特征是稳定的。角点检测算法有Harris角点检测算法、SIFT特征点检测算法、FAST角点检测算法、SURF特征点检测算法。
本次实验使用的Opencv stitch源码中默认第一选择是SURF特征点检测,第二是ORB特征点检测。
SURF(Speeded Up Robust
Features)改进了特征的提取和描述方式,用一种更为高效的方式完成特征的提取和描述。它是SIFT的高效变种,也是提取尺度不变特征,算法步骤与SIFT算法大致相同,但采用的方法不一样,SURF算法要比SIFT算法更高效。

2. 2 第二种:计算图像之间的变换结构
  • 2.1.SURF使用Hessian矩阵来检测特征点,该矩阵是x,y方向的二阶导数矩阵,可测量一个函数的局部曲率,其行列式值代表像素点周围的变化量,特征点需取行列式值的极值点。
  • 2.2特征点定位:通过特征点邻近信息插补来定位特征点。
  • 2.3方向定位:通过计算特征点周围像素点x,y方向的哈尔小波变换,并将x,y方向的变换值在xy平面某一角度区间内相加组成一个向量,在所有的向量当中最长的(即x、y分量最大的)即为此特征点的方向。
  • 2.4特征描述子:选定了特征点的方向后,其周围相素点需要以此方向为基准来建立描述子。此时以5 ∗ 5 5 55∗5个像素点为一个子区域,取特征点周围 20 ∗ 20 20 2020∗20个像素点的范围共16个子区域,计算子区域内的x、y方向(此时以平行特征点方向为x、垂直特征点方向为y的哈尔小波转换总和Σdx、ΣdyΣdx、Σdy与其向量长度总和Σ|dx|、Σ|dy|Σ|dx|、Σ|dy|共四个量值,共可产生一个64维的描
  • 2.5如果两个特征点的矩阵迹正负号相同,代表这两个特征具有相同方向上的对比度变化,如果不同,说明这两个特征点的对比度变化方向是相反的,即使欧氏距离为0,也直接予以排除。
  • 2.6用方型滤波器取代SIFT中的高斯滤波器,利用积分图(计算位于滤波器方型的四个角落值)大幅提高运算速度。
2. 3 第三种:通过graph cut寻找拼接缝

在这里插入图片描述

上图中,我们把两个Patch拼合到一起,它们首先被放置为有一定重合区域。为了让两者之间的缝隙尽可能的不明显,我们需要知道一个分割线(cut),在这个分割线的左边,图像像素由A贡献,相反在其右边,图像像素则由B贡献。
这里我们将输出的图像看做是由”图(Graph)“所表示,并且给这个Graph两个端点,一个是A,一个是B:

在这里插入图片描述

上图中,标有数字的节点实际上是重合区域的像素,节点之间的连接都是有代价的。我们需要拿起剪刀从某个连接上剪掉某些连接,并且要使得被剪掉的连接的代价之和最小化,这就是最典型的图算法中的最小割问题(min
cut),它也对应着所谓的最大流问题(max flow)。
那么,如何定义连接之间的代价呢?这里假设在重合区域两个相邻的输出像素分别是s和t。我们知道输出的像素既可能来自于A,也可能来自于B,于是我们用A(s),B(s)来表示s点在A图和B图的颜色,
用A(t),B(t)来表示t点在A图和B图的颜色。
于是,s点和t点的连接的代价被定义为:
在这里插入图片描述
我们要做的就是寻找一个切割缝,最小化M ( s , t , A , B )
M(s,t,A,B)M(s,t,A,B)当找到这条缝之后,左边的像素从A中拷贝而来,而右边的像素则从B中拷贝而来即可。
接下来就可以不断的拼合更多的Patch,目标是用越来越多次的覆盖输出图片中的缝隙,使得图像重合部分越来越多,直到代价值收敛。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

基于机器视觉的图像拼接算法 计算机竞赛

前言 图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。 再举一个身边的例子吧,…...

基于arduino uno + L298 的直流电机驱动proteus仿真设计

一、L298简介: L298是一个集成的单片电路,采用15个导线多瓦和PowerSO20封装。它是一个高电压、高电流双全桥驱动器,旨在接受标准TTL逻辑电平和驱动感应负载,如继电器、螺线管、直流和加速电机。提供两个使输入来使独立于输入信号的…...

cola架构:有限状态机(FSM)源码分析

目录 0. cola状态机简述 1.cola状态机使用实例 2.cola状态机源码解析 2.1 语义模型源码 2.1.1 Condition和Action接口 2.1.2 State 2.1.3 Transition接口 2.1.4 StateMachine接口 2.2 Builder模式 2.2.1 StateMachine Builder模式 2.2.2 ExternalTransitionBuilder-…...

通信仿真软件SystemView安装教程(超详细)

介绍 system view是一种电子仿真工具。它是一个信号级的系统仿真软件,主要用于电路与通信系统的设计和仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理,滤波器设计,直到复杂的通信系统等不同层次的设计&am…...

Go学习第八章——面向“对象”编程(入门——结构体与方法)

Go面向“对象”编程(入门——结构体与方法) 1 结构体1.1 快速入门1.2 内存解析1.3 创建结构体四种方法1.4 注意事项和使用细节 2 方法2.1 方法的声明和调用2.2 快速入门案例2.3 调用机制和传参原理2.4 注意事项和细节2.5 方法和函数区别 3 工厂模式 Gola…...

「滚雪球学Java」:方法函数(章节汇总)

🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!&#xf…...

数据分析必备原理思路(二)

文章目录 三、主流的数据分析方法与框架使用1. 五个数据分析领域关键的理论基础(1)大数定律(2)罗卡定律(3)幸存者偏差(4)辛普森悖论(5)帕累托最优&#xff08…...

分布式ID系统设计(1)

分布式ID系统设计(1) 在分布式服务中,需要对data和message进行唯一标识。 比如订单、支付等。然后在数据库分库分表之后也需要一个唯一id来表示。 基于DB的自增就肯定不能满足了。这个时候能够生成一个Global的唯一ID的服务就很有必要我们姑且把它叫做id-server 。…...

机器学习(python)笔记整理

目录 一、数据预处理: 1. 缺失值处理: 2. 重复值处理: 3. 数据类型: 二、特征工程: 1. 规范化: 2. 归一化: 3. 标准化(方差): 三、训练模型: 如何计算精确度,召…...

微客云霸王餐系统 1.0 : 全面孵化+高额返佣

1、业务简介。业务模式是消费者以5-10元吃到原价15-25元的外卖,底层逻辑是帮外卖商家做推广,解决新店基础销量、老店增加单量、品牌打万单店的需求。 因为外卖店的平均生命周期只有6个月,不断有新店愿意送霸王餐。部分老店也愿意做活动&…...

极智开发 | Hello world for Manim

欢迎关注我的公众号 [极智视界],获取我的更多经验分享 大家好,我是极智视界,本文分享一下 Hello world for Manim。 邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码和资源下载,链接:https://t.zsxq.com/0aiNxERDq Manim 是什么呢?Manim 是一个用于创…...

【云上探索实验室-码上学堂】免费学习领好礼!

走过路过,不要错过!上云AI三步走,学着课程奖品有! 亚马逊云科技又放福利了,为了让同学们更快入手Amazon CodeWhisperer,官方推出《云上探索实验室-码上学堂》活动,作为一名Amazon CodeWhisperer…...

Flutter最全面试题大全

在理解这些问题之前,建议看一下Flutter架构原理,如下链接: https://blog.csdn.net/wang_yong_hui_1234/article/details/130427887?spm1001.2014.3001.5501 目录 一. 有个Text节点,由于文字内容过多,发生了溢出错误&…...

Linux---(四)权限

文章目录 一、shell命令及运行原理1.什么是操作系统?2.外壳程序3.用户为什么不直接访问操作系统内核?4.操作系统内核为什么不直接把结果显示出来?非要加外壳程序?5.shell理解重点总结(1)shell是什么?&…...

财务RPA机器人真的能提高效率吗?

财务部门作为一个公司的管理职能部门承担着一个公司在商业活动中各个方面的重要职责。理论上来说,一个公司的财务部门的实际工作包含但不限于对企业的盈亏情况进行评估、对风险进行预测、通过数据分析把握好公司的财务状况、税务管理等。 然而,实际上在…...

国产信号发生器 1442/1442A射频信号发生器

信号发生器 1442/A射频信号发生器 1442系列射频信号发生器是一款针对通信、电子等射频应用而设计开发的产品。覆盖了所有的常用射频频段。它采用模块化结构设计,全中文界面、大屏幕菜单控制,其输出信号相位噪声极低,频率分辨率和准确度高&am…...

Kafka与Spark案例实践

1.概述 Kafka系统的灵活多变,让它拥有丰富的拓展性,可以与第三方套件很方便的对接。例如,实时计算引擎Spark。接下来通过一个完整案例,运用Kafka和Spark来合理完成。 2.内容 2.1 初始Spark 在大数据应用场景中,面对…...

山西电力市场日前价格预测【2023-10-27】

日前价格预测 预测说明: 如上图所示,预测明日(2023-10-27)山西电力市场全天平均日前电价为347.06元/MWh。其中,最高日前电价为618.09元/MWh,预计出现在18: 15。最低日前电价为163.49元/MWh,预计…...

centos7安装redis(包含各种报错)

本文主要介绍如果在Centos7下安装Redis。 1.安装依赖 redis是由C语言开发,因此安装之前必须要确保服务器已经安装了gcc,可以通过如下命令查看机器是否安装: gcc -v如果没有安装则通过以下命令安装: yum install -y gcc2.下载r…...

使用GoQuery实现头条新闻采集

概述 在本文中,我们将介绍如何使用Go语言和GoQuery库实现一个简单的爬虫程序,用于抓取头条新闻的网页内容。我们还将使用爬虫代理服务,提高爬虫程序的性能和安全性。我们将使用多线程技术,提高采集效率。最后,我们将展…...

“一带一路”十周年:用英语讲好中华传统故事

图为周明霏小选手 2023年是“一带一路”倡议提出十周年。十年来,中国的“友谊圈”已经扩展到亚洲、非洲、欧洲、大洋洲和拉丁美洲,这一倡议已经成为提升我国文化软实力、传播中华传统文化的重要策略和途径之一。在这个广阔的交流平台上,使用…...

机器视觉兄弟们还有几个月就拿到年终奖了,但我想跑路了

大聪明的我一般会把年终奖拿了,再走。听说有人还没有年终奖,太伤心了,赶紧跑吧。注意,机器视觉小白不要轻举妄动。 今年太难了,真的是让人很难过,很不爽,很不舒服。 公司难,机器视…...

base_lcoal_planner的LocalPlannerUtil类中getLocalPlan函数详解

本文主要介绍base_lcoal_planner功能包中LocalPlannerUtil类的getLocalPlan函数,以及其调用的transformGlobalPlan函数、prunePlan函数的相关内容 一、getLocalPlan函数 getLocalPlan函数的源码如下: bool LocalPlannerUtil::getLocalPlan(const geomet…...

elasticSearch put全局更新和单个字段更新语法

1、如下:更新改类型未doc(文档)的全局字段数据 注意:如果你使用的是上面的语句,但是只写了id和title并赋值,图片上其他字段没有填写,执行命令后,则会把原文档中的其他字段都给删除了,你会发现查…...

记录一次时序数据库的实战测试

0x1.前言 ​ 本文章仅用于信息安全防御技术分享,因用于其他用途而产生不良后果,作者不承担任何法律责任,请严格遵循中华人民共和国相关法律法规,禁止做一切违法犯罪行为。文中涉及漏洞均以提交至教育漏洞平台。 0x2.背景 ​ 在某…...

HTML中文本框\单选框\按钮\多选框

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <h1>登录注册</h1> <form action"第一个网页.html" method"post&quo…...

解释器模式——化繁为简的翻译机

● 解释器模式介绍 解释器模式&#xff08;Interpreter Pattern&#xff09;是一种用的比较少的行为型模式&#xff0c;其提供了一种解释语言的语法或表达的方式&#xff0c;该模式定义了一个表达式接口&#xff0c;通过该接口解释一个特定的上下文。在这么多的设计模式中&…...

【凡人修仙传】定档,四女神出场,韩立遭极阴岛陷阱,蛮胡子亮相

【侵权联系删除】【文/郑尔巴金】 距离凡人修仙传动画星海飞驰序章完结&#xff0c;已经过去了两个月的时间&#xff0c;相信大家等待的心情相当难熬&#xff0c;而且也愈发期待韩立结丹后在乱星海发生的故事。按照官方当初立下的FLAG&#xff0c;新年番动画即将在金秋十一月上…...

【解决】设置pip安装依赖包路径默认路径在conda路径下,而不是C盘路径下

【解决】设置pip安装依赖包路径默认路径在conda路径下&#xff0c;而不是C盘路径下 问题描述 在win11下安装miniconda&#xff0c;在conda环境里使用pip安装&#xff0c;依赖包总是安装到C盘路径&#xff0c;如 C:\Users\Jimmy\AppData\Local\Programs\Python\Python311\Lib\…...

JoySSL-新兴国产品牌数字证书

随着我国对数据安全重视程度的不断提升&#xff0c;国产SSL证书越来越受到广大政府机关和企业的青睐&#xff0c;成为提升网站数据安全能力的重要技术手段。那么什么是国产SSL证书&#xff1f;国产SSL证书和普通SSL证书又有什么区别呢&#xff1f; 什么是国产SSL证书&#xff…...