深度学习与计算机视觉(一)
文章目录
- 计算机视觉与图像处理的区别
- 人工神经元
- 感知机 - 分类任务
- Sigmoid神经元/对数几率回归
- 对数损失/交叉熵损失函数
- 梯度下降法- 极小化对数损失函数
- 线性神经元/线性回归
- 均方差损失函数-线性回归常用损失函数
- 使用梯度下降法训练线性回归模型
- 线性分类器
- 多分类器的决策面
- softmax Regression
- 训练softmax regression
- 交叉熵损失
- 解决参数冗余
- 训练softmax Classifier
- 混淆矩阵
- 合页(铰链)损失
计算机视觉与图像处理的区别
-
图像处理得到的结果是处理后的图像,图像处理的目的是改善图像的质量
- 图像增强
- 图像复原
-
计算机视觉得到的结果可能是一个符号、一堆数据、一个知识
- 人脸识别
- 人脸比对
-
传统的图像识别的机器学习方法的一般流程包括:
- 特征提取→数据
- 数据→机器学习
-
为什么要提取图像的特征
- 提取有利于识别的信息,抑制与识别无关的或者对识别有干扰的信息
- 把不同尺度的图像映射到一个统一的特征空间,便于应用机器学习算法。
-
机器学习的框架:D数据,A算法,H假设空间,h* H中最好的假设(真实误差最小的假设)
-
概率近似正确
人工神经元
f:响应函数/激活函数一般都是非线性的函数,且一般都单调递增;常用的激活函数包括以下:
因为f是单调递增的函数,,如果 w>0,则,说明前一个神经元对后一个神经元有激活的作用;如果w<0 ,说明前一个神经元对后一个神经元有抑制作用。
感知机 - 分类任务
- 感知机算法在线性可分的情况下,一定可以收敛,也就是一定可以找到一个能正确分类所有样本的分类函数
- 但是同一个样本集,有可能会得到不同的解
- 不同的初始值,不同的样本处理次序产生的结果不同
- 不能得到全局最优的解
- 线性不可分的时候,算法会失败
感知机的算法
损失函数:不能处处可导
解决方法:次梯度
Sigmoid神经元/对数几率回归
只有激活函数的不同,sigmoid处处连续可导,输出的是对数几率
对数损失/交叉熵损失函数
损失函数通过比较模型对样本X的预测结果与样本的真实类别y之间的差异,计算损失,差异越大,损失越大,差异越小,损失越小。
梯度下降法- 极小化对数损失函数
线性神经元/线性回归
神经元有两个部分组成:收集信号的过程和激活的过程,收集信号如果是使用线性过程(累加)就是线性神经元。至于收集到的信号能不能激活下一个神经元,要看激活函数的过程,这个过程一般不是线性的。
均方差损失函数-线性回归常用损失函数
使用梯度下降法训练线性回归模型
是对w,b进行更新
一元导数与微分的关系: d f / d x = f ′ 一元导数与微分的关系:df/dx=f' 一元导数与微分的关系:df/dx=f′
全微分: d F = ( α F / α x ) d x + ( α F / α y ) d y 全微分:dF=(αF/αx) dx+(αF/αy) dy 全微分:dF=(αF/αx)dx+(αF/αy)dy
线性分类器
α ∗ β = ∣ α ∣ ∗ ∣ β ∣ c o s < α , β > ( α , β 为向量),其中 ∣ β ∣ c o s < α , β > 称为 β 在 α 上的投影 α*β=|α|*|β|cos<α,β>(α,β为向量),其中|β|cos<α,β>称为β在α上的投影 α∗β=∣α∣∗∣β∣cos<α,β>(α,β为向量),其中∣β∣cos<α,β>称为β在α上的投影
多分类器的决策面
决策面是可以把各种分类分开的一个面,在三级分类中,决策面应该在超平面的角平分线处划分
softmax Regression
- 这种argmax会把打分最高的结果设为1,其他的结果设为0;但是这种投影的坏处在于只看得到分类,看不到分类的置信为多少,所以引入了softmax Regression( e z 变成正数,正数加和为分母,求概率 e^z变成正数,正数加和为分母,求概率 ez变成正数,正数加和为分母,求概率)
softmax的决策规则就是:寻找概率最大的作为分类的输出,又因为e函数是单调递增的,所以只要z最大,则概率就会最大。
训练softmax regression
这里要特别注意,这里计算损失函数的那个概率,是真实样本所对应的概率,不是预测值的那个概率
训练过程
交叉熵损失
解决参数冗余
可以使用一个正则化项:选择损失函数小且Ω也小的
训练softmax Classifier
混淆矩阵
对角线上的表示第k个类别的精度,混淆矩阵可以清晰的看到哪一个类别的分类情况较好(精度高),哪一个类别的分类情况不好(精度第),以及具体的分类情况是什么
合页(铰链)损失
相关文章:

深度学习与计算机视觉(一)
文章目录 计算机视觉与图像处理的区别人工神经元感知机 - 分类任务Sigmoid神经元/对数几率回归对数损失/交叉熵损失函数梯度下降法- 极小化对数损失函数线性神经元/线性回归均方差损失函数-线性回归常用损失函数使用梯度下降法训练线性回归模型线性分类器多分类器的决策面 soft…...

【vector题解】杨辉三角 | 删除有序数组中的重复项 | 只出现一次的数字Ⅱ
杨辉三角 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1…...

金字塔切分注意力模块PSA学习笔记 (附代码)
已有研究表明:将注意力模块嵌入到现有CNN中可以带来显著的性能提升。比如,SENet、BAM、CBAM、ECANet、GCNet、FcaNet等注意力机制均带来了可观的性能提升。但是,目前仍然存在两个具有挑战性的问题需要解决。一是如何有效地获取和利用不同尺度…...

Jenkins自动化测试
学习 Jenkins 自动化测试的系列文章 Robot Framework 概念Robot Framework 安装Pycharm Robot Framework 环境搭建Robot Framework 介绍Jenkins 自动化测试 1. Robot Framework 概念 Robot Framework是一个基于Python的,可扩展的关键字驱动的自动化测试框架。 它…...

python 字典dict和列表list的读取速度问题, range合并
嗨喽,大家好呀~这里是爱看美女的茜茜呐 python 字典和列表的读取速度问题 最近在进行基因组数据处理的时候,需要读取较大数据(2.7G)存入字典中, 然后对被处理数据进行字典key值的匹配,在被处理文件中每次…...

测试用例的设计方法(全):等价类划分方法
一.方法简介 1.定义 是把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例。该方法是一种重要的,常用的黑盒测试用例设计方法。 2.划分等价类: 等价类是指某个输入域的…...

Office技巧(持续更新)(Word、Excel、PPT、PowerPoint、连续引用、标题、模板、论文)
1. Word 1.1 标题设置为多级列表 选住一级标题,之后进行“定义新的多级列表” 1.2 图片和表的题注自动排序 正常插入题注后就可以了。如果一级标题是 “汉字序号”,那么需要对题注进行修改: 从原来的 图 { STYLEREF 1 \s }-{ SEQ 图 \* A…...

Java实现ORM第一个api-FindAll
经过几天的业余开发,今天终于到ORM对业务api本身的实现了,首先实现第一个查询的api 老的C#定义如下 因为Java的泛型不纯,所以无法用只带泛型的方式实现api,对查询类的api做了调整,第一个参数要求传入实体对象 首先…...

HFSS笔记——求解器和求解分析
文章目录 1、求解器2、求解类型3、自适应网格剖分4、求解频率选择4.1 求解设置项的含义4.2 扫频类型 1、求解器 自从ANSYS将HFSS收购后,其所有的求解器都集成在一起了,点击Project,会显示所有的求解器类型。 其中, HFSS design&…...

jenkins配置gitlab凭据
下载Credentials Binding插件(默认是已经安装了) 在凭据配置里添加凭据类型 点击保存 Username with password: 用户名和密码 SSH Username with private 在凭据管理里面添加gitlab账号和密码 点击全局 点击添加凭据(版本不同…...

0基础学习PyFlink——用户自定义函数之UDTF
大纲 表值函数完整代码 在《0基础学习PyFlink——用户自定义函数之UDF》中,我们讲解了UDF。本节我们将讲解表值函数——UDTF 表值函数 我们对比下UDF和UDTF def udf(f: Union[Callable, ScalarFunction, Type] None,input_types: Union[List[DataType], DataTy…...

【Java 进阶篇】Java Request 原理详解
在网络应用开发中,HTTP请求是一项常见而关键的任务。当我们使用Java编写网络应用时,了解HTTP请求的工作原理变得至关重要。本文将详细介绍Java中HTTP请求的原理,包括请求的结构、发送请求的方法以及处理请求的过程。 HTTP请求的基本结构 HT…...

13 结构性模式-装饰器模式
1 装饰器模式介绍 在软件设计中,装饰器模式是一种用于替代继承的技术,它通过一种无须定义子类的方式给对象动态的增加职责,使用对象之间的关联关系取代类之间的继承关系. 2 装饰器模式原理 //抽象构件类 public abstract class Component{public abstract void operation(); }…...

支持向量机(SVM)
一. 什么是SVM 1. 简介 SVM,曾经是一个特别火爆的概念。它的中文名:支持向量机(Support Vector Machine, 简称SVM)。因为它红极一时,所以关于它的资料特别多,而且杂乱。虽然如此,只要把握住SV…...

Rabbitmq----分布式场景下的应用
服务异步通信-分布式场景下的应用 如果单机模式忘记也可以看看这个快速回顾rabbitmq,在做学习 消息队列在使用过程中,面临着很多实际问题需要思考: 1.消息可靠性 消息从发送,到消费者接收,会经理多个过程: 其中的每一…...

springboot + redis实现签到与统计功能
在很多项目中都会有签到与统计功能,最容易想到的方案是创建一个签到表来记录每个用户的签到记录,比如设计一个mysql数据库表: CREATE TABLE tb_sign id bigint(20) unsigned NOT NULL AUTOINCREMENT COMMENT 主键, user_id bigint(20) unsig…...

Redis | 数据结构(02)SDS
一、键值对数据库是怎么实现的? 在开始讲数据结构之前,先给介绍下 Redis 是怎样实现键值对(key-value)数据库的。 Redis 的键值对中的 key 就是字符串对象,而 value 可以是字符串对象,也可以是集合数据类型…...

Linux C语言开发-D7D8运算符
算术运算符:-*/%,浮点数可以参与除法运算,但不能参与取余运算 a%b:表示取模或取余 关系运算符:<,>,>,<,,! 逻辑运算符:!,&&,|| &&,||逻辑运算符是从左到右,依次运算&#…...

redis 配置主从复制,哨兵模式案例
哨兵(Sentinel)模式 1 . 什么是哨兵模式? 反客为主的自动版,能够自动监控master是否发生故障,如果故障了会根据投票数从slave中挑选一个 作为master,其他的slave会自动转向同步新的master,实现故障自动转义 2 . 原理…...

Python---练习:使用for循环实现用户名+密码认证
案例: 用for循环实现用户登录 ① 输入用户名和密码 ② 判断用户名和密码是否正确(usernamelaowang,passwordlw123) ③ 登录仅有三次机会,超过3次会报错 思考: 用户登陆情况有3种: ① 用户名错误(此时…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...

高抗扰度汽车光耦合器的特性
晶台光电推出的125℃光耦合器系列产品(包括KL357NU、KL3H7U和KL817U),专为高温环境下的汽车应用设计,具备以下核心优势和技术特点: 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计,确保在…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...