当前位置: 首页 > news >正文

K-Means和KNN

主要区别

从无序 —> 有序
从K-Means —> KNN

  • KNN:监督学习,类别是已知的,对已知分类的数据进行训练和学习,找到不同类的特征,再对未分类的数据进行分类。
  • K-Means:无监督学习,事先不知道数据有几类,通过聚类分析将数据聚合成几个群体。聚类不需要对数据进行训练和学习。

KNN

原理

将预测点与所有点的距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多,则预测的点就属于哪一类。
KNN也可以用于回归预测

算法步骤

对未知类别属性的数据集中每个点依次执行以下操作:

  1. 计算已知类别数据集中的点与当前点之间的距离;
    通常使用的是欧氏距离
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
    如何确定k?
    通过交叉验证,从选取一个较小的k值开始,不断增加k的值,然后计算验证集合的方差,最终找到一个比较合适的k值。
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。

K-Means

原理

随机选取质心——计算各样本点和质心的距离后分类——再次选择新的质心
【扩展】
邻近度函数(即距离计算):
(1)曼哈顿距离:质心——中位数,目标函数——最小化对象到簇质心的距离和;
(2)平方欧几里得距离:质心——均值,目标函数——最小化对象到簇质心的距离的平方和;
(3)余弦距离:质心——均值,目标函数——最大化对象与其质心的余弦相似度和;
(4)Bregman散度:质心——均值,目标函数——最小化对象到簇质心的Bregman散度和。

算法步骤

  1. 随机选取k个质心(k值取决于想聚成几类);
  2. 计算样本到质心的距离,距离质心近的归为一类,分为k类;
  3. 求出分类后的每类的新质心;
  4. 再次计算样本到新质心的距离,距离质心距离近的归为一类;
  5. 判断新旧聚类是否相同,如果相同就代表已经聚类成功,如果没有则循环2-4。

在这里插入图片描述
在这里插入图片描述

相关文章:

K-Means和KNN

主要区别 从无序 —> 有序 从K-Means —> KNN KNN:监督学习,类别是已知的,对已知分类的数据进行训练和学习,找到不同类的特征,再对未分类的数据进行分类。K-Means:无监督学习,事先不知道…...

【Python】【Flask】flask_login的初始化

【背景】 想要更高效地用现有的Flask_login包来实现用户管理方面的常用功能会话管理等。不想再手搓了。 【要点】 首先引入flask_login from flask_login import LoginManager, login_user, login_required, logout_user,current_user然后进行app级别的设置和初始化 login…...

Spring Cloud之API网关(Gateway)

目录 API网关 好处 解决方案 Gateway 简介 特征 核心概念 Route(路由) Predicate(断言) Filter(过滤器) 工作流程 Route(路由) 路由配置方式 1.yml配置文件路由 2.bean进行配置 3.动态路由 动态路由 Predicate(断言) 特点 常见断言 示例 Filter(过滤器) …...

nodejs+vue 电子书阅读系统

本文首先介绍了电子书阅读系统的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,随着网络技术的不断发展,多媒体技术应用渐渐的出现在教育领域中,电子书阅读已经成为社会的一个热…...

百度文心一言4.0抢先体验教程!

🍁 展望:关注我, AI学习之旅上,我与您一同成长! 一、 引言 想快速体验文心一言4.0,但又觉得技术难度太高?别担心,我来手把手教你! 🚀 10月17日,文心一言4.0…...

单目3D目标检测 方法综述——直接回归方法、基于深度信息方法、基于点云信息方法

本文综合整理单目3D目标检测的方法模型,包括:基于几何约束的直接回归方法,基于深度信息的方法,基于点云信息的方法。万字长文,慢慢阅读~ 直接回归方法 涉及到模型包括:MonoCon、MonoDLE、MonoFlex、CUPNet…...

oracle,CLOB转XML内存不足,ORA-27163: out of memory ORA-06512: at “SYS.XMLTYPE“,

通过kettle采集数据时,表输入的组件,查询报错。 ORA-27163: out of memory ORA-06512: at “SYS.XMLTYPE”, line 272 ORA-06512: at line 1 通过 ALTER SESSION SET EVENTS ‘31156 trace name context forever, level 0x400’; 修改会话配置 或直接修改…...

PHP与mysql数据库交互

PHP与mysql数据库交互 文章目录 PHP与mysql数据库交互方法速查建立与Mysql链接捕获连接错误SQL语句的执行SQL 错误SQL语句执行结果集对象方法速查 案例 方法速查 函数名 作用 mysqli_connect() 与MySQL 数据库建立连接。 mysqli_close() 关闭与MYSQL 数据库建…...

【广州华锐视点】VR飞行员驾驶模拟实训系统

VR飞行员驾驶模拟实训系统是一种基于虚拟现实技术的航空装备仿真测试技术,可以用于飞行员、乘务员和机务人员的训练。该系统可以模拟真实的飞行环境,包括天气、地形、飞机性能等,使被试者能够在虚拟环境中进行飞行操作,从而提高其…...

太烂的牌也要打完只为自己也不是为了其他什么原因。

day17_io02 1.上课代码敲一遍 2.读取一个文件,这个文件中有随机的一些数字字符,统计这些数字有几个偶数,几个奇数,并且追加写入到该文件末尾。 例如: a.txt文件: 3241256364789629090126581212515 奇数&…...

SDL窗口创建以及简单显示(1)

项目创建步骤 1. 使用Qt Creator创建一个C项目 2. 将SDL库文件放到源文件目录下 在项目pro文件中添加库文件 win32{INCLUDEPATH $$PWD/SDL2-2.0.10/includeLIBS $$PWD/SDL2-2.0.10/lib/x86/SDL2.lib } 使用SDL创建一个窗口 #include <stdio.h>#include <SDL.h>…...

【Html】交通灯问题

效果 实现方式 计时器&#xff1a;setTimeout或setInterval来计时。setInterval和 setTimeout 在某些情况下可能会出现计时不准确的情况。这通常是由于JavaScript的事件循环机制和其他代码执行所需的时间造成的。 问询&#xff1a;通过getCurrentLight将每个状态的持续时间设置…...

用IntelliJ远程打断点调试

前提当然是本地和远程部署的代码一样。 记录下步骤&#xff1a; 1&#xff0c;用token登录kuboard&#xff0c;找到目标容器的IP&#xff1a; 2, 用上一步找到的IP等信息创建Remote JVM Debug: 3&#xff0c;打断点&#xff0c;wkb说要把断点此属性改为线程。我试了下似乎…...

Spring-Bean的生命周期概述

Bean的生命周期概述 入门使用的Spring代码&#xff1a; ClassPathXmlApplicationContext context new ClassPathXmlApplicationContext("spring.xml"); UserService userService (UserService) context.getBean("userService"); userService.test(); …...

SENet 学习

ILSVRC 是一个比赛&#xff0c;全称是ImageNet Large-Scale Visual Recognition Challenge&#xff0c;平常说的ImageNet比赛指的是这个比赛。 使用的数据集是ImageNet数据集的一个子集&#xff0c;一般说的ImageNet&#xff08;数据集&#xff09;实际上指的是ImageNet的这个子…...

目前和未来的缓存构建

说起来可能有点反直觉&#xff0c;有时候不运行反而可以帮助我们加快速度&#xff0c;这正是网络浏览器运行的指导原则。不必在页面上加载所有内容&#xff0c;缓存的元素已经存在&#xff0c;不需要每次访问网站或网页时都重新加载。页面加载速度越快&#xff0c;浏览器的工作…...

aws亚马逊云免费账号代充值!!!什么是 AWS Lambda?

AWS Lambda 是一项计算服务&#xff0c;可使您无需预配置或管理服务器即可运行代码。 Lambda 在可用性高的计算基础设施上运行您的代码&#xff0c;执行计算资源的所有管理工作&#xff0c;其中包括服务器和操作系统维护、容量调配和弹性伸缩和记录。使用 Lambda&#xff0c;您…...

《从零开始大模型开发与微调 :基于PyTorch与ChatGLM》简介

内 容 简 介 大模型是深度学习自然语言处理皇冠上的一颗明珠&#xff0c;也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架&#xff0c;以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术&#xff0c;…...

【LeetCode】102. 二叉树的层序遍历

题目链接 文章目录 Python3方法一&#xff1a; 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法二&#xff1a; 深度优先搜索 (DFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯ C方法一&#xff1a; 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n…...

golang连接池检查连接失败时如何重试

在Go中&#xff0c;可以通过使用database/sql包的DB类型的Ping方法来检查数据库连接的可用性。如果连接检查失败&#xff0c;可以选择进行重试。以下是一个简单的示例代码&#xff0c;演示了如何在连接检查失败时进行重试&#xff1a; import ("database/sql""…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...